Сообщение природные источники углеводородов. Природные источники углеводородов

1. Природные источники углеводородов: газ, нефть, каменный уголь. Их переработка и практическое применение.

Основными природными источниками углеводородов являются нефть, природный и попутный нефтяной газы и каменный уголь.

Природный и попутный нефтяной газы.

Природный газ – смесь газов, основным компонентом которой является метан, остальное приходится на долю этана, пропана, Бутана, и небольшого количества примесей – азота, оксида углерода (IV), сероводорода и паров воды. 90% его расходуется в качестве топлива, остальные 10% используют как сырье для химической промышленности: получение водорода, этилена, ацетилена, сажи, различный пластмасс, медикаментов и др.

Попутный нефтяной газ – это тоже природный газ, но он встречается вместе с нефтью – находится над нефтью или растворен в ней под давлением. Попутный газ содержит 30 – 50% метана, остальная часть приходится на его гомологи: этан, пропан, бутан и другие углеводороды. Кроме того, в нем присутствуют те же примеси, что и в природном газе.

Три фракции попутного газа:

1. Газовый бензин; его добавляют к бензину для улучшения запуска двигателя;

2. Пропан-бутановая смесь; применяется как бытовое топливо;

3. Сухой газ; используют для получения ацителена, водорода, этилена и других веществ, из которых в свою очередь производят каучуки, пластмассы, спирты, органические кислоты и т.д.

Нефть.

Нефть – маслянистая жидкость от желтого или светло-бурого до черного цвета с характерным запахом. Она легче воды и в ней практически нерастворима. Нефть представляет собой смесь примерно 150 углеводородов с примесями других веществ, поэтому у нее нет определенной температуры кипения.

90% добываемой нефти используется как сырье для производства различных видов топлива и смазочных материалов. В то же время нефть – ценное сырье для химической промышленности.

Нефть, добываемую из земных недр, называю сырой. В сыром виде нефть не применяют, ее подвергают переработке. Сырую нефть очищают от газов, воды и механических примесей, а затем подвергают фракционной перегонке.

Перегонка – процесс разделения смесей на отдельные компоненты, или фракции, на основании различия их температур кипения.

При перегонке нефти выделяют несколько фракций нефтепродуктов:

1. Газовая фракция (tкип = 40°С) содержит нормальные и разветвленные алканы СН4 – С4Н10;

2. Бензиновая фракция (tкип = 40 - 200°С) содержит углеводороды С 5 Н 12 – С 11 Н 24 ; при повторной перегонке из смеси выделяют легкие нефтепродукты, кипящие в более низких интервалах температур: петролейный эфир, авиационный и автомобильный бензин;

3. Лигроиновая фракция (тяжелый бензин, tкип = 150 - 250°С), содеожит углеводороды состава С 8 Н 18 – С 14 Н 30 , применяют в качестве горючего для тракторов, тепловозов, грузовых автомобилей;



4. Керосиновая фракция (tкип = 180 - 300°С) включает углеводороды состава С 12 Н 26 - С 18 Н 38 ; ее используют в качестве горючего для реактивных самолетов, ракет;

5. Газойль (tкип = 270 - 350°С) используют как дизельное топливо и в больших масштабах подвергается крекингу.

После отгонки фракций остается темная вязкая жидкость – мазут. Из мазута выделяют соляровые масла, вазелин, парафин. Остаток от перегонки мазута – гудрон, его применяют при производстве материалов для дорожного строительства.

Вторичная переработка нефти основана на химических процессах:

1. Крекинг – расщепление крупных молекул углеводородов на более мелкие. Различают термический и каталитический крекинг, который более распространен в настоящее время.

2. Риформинг (ароматизация) - это превращение алканов и циклоалканов в ароматические соединения. Этот процесс осуществляют путем нагревания бензина при повышенном давлении в присутствии катализатора. Риформинг применяют для получения из бензиновых фракций ароматических углеводородов.

3. Пиролиз нефтепродуктов проводят нагреванием нефтепродуктов до температуры 650 - 800°С, основными продуктами реакции являются непредельные газообразные и ароматические углеводороды.

Нефть – сырье для производства не только топлива, но и многих органических веществ.

Каменный уголь.

Каменный уголь так же является источником энергии и ценным химическим сырьем. В состав каменного угля в основном органические вещества, а также вода, минеральные вещества, при сжигании образующие золу.

Одним из видов переработки каменного угля является коксование – это процесс нагревания угля до температуры 1000°С без доступа воздуха. Коксование угля проводят в коксовых печах. Кокс состоит из практически чистого углерода. Его используют в качестве восстановителя при доменом производстве чугуна на металлургических заводах.

Летучие вещества при конденсации каменноугльную смолу (содержит много различных органических веществ, из них большая часть – ароматические), аммиачную воду (содержит аммиак, соли аммония) и коксовый газ (содержит аммиак, бензол, водород, метан, оксид углерода (II), этилен, азот и другие вещества).

Происхождение горючих ископаемых.

Кроме того, что из органических веществ состоят все живые организмы, основным источником органических соединений являются: нефть, уголь, природный и сопутствующий нефтяной газы.

Нефть, уголь и природный газ – это источники углеводородов.

Эти природные ископаемые используют:

· В качестве топлива (источника энергии и теплоты) – это обычное сжигание;

· В виде сырья для дальнейшей переработки – это органический синтез.

Теории происхождения органических веществ:

1- Теория органического происхождения.

Согласно этой теории залежи образовались из остатков вымерших растительных и животных организмов, превратившихся в смесь углеводородов в толще земной коры под действием бактерий, высоких давления и температуры.

2- Теория минерального (вулканического) происхождения нефти.

Согласно этой теории нефть, уголь и природный газ образовались на первичной стадии формирования планеты Земля. При этом металлы соединялись с углеродом, образуя карбиды. В результате реакции карбидов с водяным паром в глубинах планеты образовались газообразные углеводороды, в частности метан и ацетилен. А под влиянием нагревания, радиации и катализаторов из них образовались другие соединения, содержащиеся в нефти. В верхних слоях литосферы жидкие нефтяные компоненты испарялись, жидкость загустевала, превращалась в асфальт и затем в уголь.

Эту теорию вначале высказал Д.И.Менделеев, а затем в 20-м веке французский ученый П.Сабатье смоделировал описанный процесс в лаборатории и получил смесь углеводородов, подобную нефти.

Основным компонентом природного газа является метан. В нем содержатся также этан, пропан, бутан. Чем выше молекулярная масса углеводорода, тем меньше его содержится в природном газе.

Применение: при сгорании природного газа выделяется много теплоты, поэтому он служит энергетически эффективным и дешевым топливом в промышленности. Природный газ также является источником сырья для химической промышленности: получение ацетилена, этилена, водорода, сажи, различных пластмасс, уксусной кислоты, красителей, медикаментов и других продуктов.

Попутные нефтяные газы находятся в природе над нефтью или растворены в ней под давлением. Ранее попутные нефтяные газы не находили применение, их сжигали. В настоящее время их улавливают и используют как топливо и ценное химическое сырьё. В попутных газах содержится меньше метана, чем в природном газе, но в них значительно больше его гомологов. Попутные нефтяные газы разделяют до более узкого состава.



Например: газовый бензин – смесь пентана, гексана и других углеводородов добавляют к бензину для улучшения запуска двигателя; пропан-бутановая фракция в виде сжиженного газа применяется как топливо; сухой газ – по составу сходен с природным – используют для получения ацетилена, водорода, а также как топливо.иногда попутные нефтяные газы подвергают более тчательному разделению и извлекают из них индивидуальные углеводороды, из которых затем получают непредельные углеводороды.

Одним из самых распространенных видов топлива и сырья для органического синтеза остается каменный уголь. Какие виды каменного угля бывают, откуда уголь берут и для получения каких продуктов его используют – это основные вопросы, которые мы с вами сегодня на уроке рассмотрим. Как источник химических веществ каменный уголь начал использоваться раньше, чем нефть и природный газ.

Каменный уголь – это не индивидуальное вещество. В его состав входят: свободный углерод (до 10%), органические вещества, содержащие кроме углерода и водорода – кислород, серу, азот, минеральные вещества, которые остаются в виде шлака при сжигании угля.

Уголь – это твердое горючее полезное ископаемо органического происхождения. Согласно биогенной гипотезе – он образовался из отмерших растений в результате жизнедеятельности микроорганизмов в каменноугольном периоде палеозойской эры (около 300млн лет назад). Уголь дешевле нефти, он более равномерно распределен в земной коре, его природные запасы намного превосходят запасы нефти и, по прогнозам ученных, не будут исчерпаны еще в течение века.

Образование угля из растительных остатков (углефикация) происходит в несколько стадий: торф – бурый уголь – каменный уголь – антрацит.

Процесс углефикации состоит в постепенном увеличении относительного содержания углерода в органическом веществе в следствие его обеднения кислородом и водородом. Образование торфа и бурого угля происходит в результате биохимического разложения растительных остатков без доступа кислорода. Переход бурого угля в - каменный происходит под воздействием повышенных температур и давления, связанных с горообразующими и вулканическими процессами.


Глава 1. ГЕОХИМИЯ НЕФТИ И РАЗВЕДКА ГОРЮЧИХ ИСКОПАЕМЫХ.. 3

§ 1. Происхождение горючих ископаемых. 3

§ 2. Газонефтеродные горные породы. 4

Глава 2. ПРИРОДНЫЕ ИСТОЧНИКИ.. 5

Глава 3. ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ УГЛЕВОДОРОДОВ.. 8

Глава 4. ПЕРЕРАБОТКА НЕФТИ.. 9

§ 1. Фракционная перегонка.. 9

§ 2. Крекинг. 12

§ 3. Риформинг. 13

§ 4. Очистка от серы.. 14

Глава 5. ПРИМЕНЕНИЯ УГЛЕВОДОРОДОВ.. 14

§ 1. Алканы.. 15

§ 2. Алкены.. 16

§ 3. Алкины.. 18

§ 4. Арены.. 19

Глава 6. Анализ состояния нефтяной промышленности. 20

Глава 7. Особенности и основные тенденции деятельности нефтяной промышленности. 27

Список использованной литературы... 33

Первые теории, в которых рассматривались принципы, определяющие залегание месторождений нефти, обычно ограничивались главным образом вопросом о местах ее скопления. Однако за последние 20 лет стало ясно, что для ответа на этот вопрос необходимо разобраться в том, почему, когда и в каких количествах произошло образование нефти в том или ином бассейне, а также понять и установить, в результате каких процессов она зарождалась, мигрировала и накапливалась. Эти сведения совершенно необходимы для повышения результатив­ности разведки нефти.

Образование углеводородных ископаемых, согласно современным воззрениям, происходило в результате протекания сложной последовательности геохимических процессов (см. рис. 1) внутри исходных газонефтеродных горных пород. В этих процессах составные части различных биологических систем (веществ природного происхождения) превращались в углеводороды и в меньшей степени в полярные соединения с различной термодинамической устойчивостью - в результате осаждения веществ природного происхождения и последующего их перекрывания осадочными породами, под влиянием повышенной температуры и повышенного давления в поверхностных слоях земной коры. Первичная миграция жидких и газообразных продуктов из исходного газонефтеродного слоя и последующая их вторичная миграция (через несущие горизонты, сдвиги и т. п.) в пористые нефтенасыщенные горные породы приводит к образованию залежей углеводородных материалов, дальнейшая миграция которых предотвращается запиранием залежей между не­пористыми слоями горных пород.

В экстрактах органического вещества из осадочных горных пород биогенного происхождения обнаруживаются соединения с такой же химической структурой, какую имеют соединения, извлекаемые из нефти. Для геохимии имеют особо важное значение некоторые из таких соединений, которые считаются «биологическими метками» («химическими ископаемыми»). Подобные углеводороды имеют много общего с соединениями, встречающимися в биологических системах (например, с липидами, пигментами и метаболитами), из которых произошло образование нефти. Эти соединения не только демонстрируют биогенное происхождение природных углеводородов, но и позволяют получать очень важную информацию о газонефте­носных горных породах, а также о характере созревания и происхождения, миграции и биоразложения, приведших к образованию конкретных месторождений газа и нефти.

Рисунок 1 Геохимические процессы, приводящие к образованию ископаемых углеводородов.

Газонефтеродной горной породой считается мелкодисперсная осадочная порода, которая при естественном осаждении привела или могла привести к образованию и выделению значительных количеств нефти и (или) газа. Классификация таких горных пород основана на учете содержания и типа органического вещества, состояния его метаморфической эволюции (химических превращений, происходящих при температурах приблизительно 50-180 °С), а также природы и количества углеводородов, которые могут быть получены из него. Органическое вещество кероген в осадочных горных породах биогенного происхож­дения может обнаруживаться в самых разнообразных формах, но его можно подразделить на четыре основных типа.

1) Липтиниты – имеют очень высокое содержание водорода, но низкое содер­жание кислорода; их состав обусловлен наличием алифатических углеродных цепей. Предполагается, что липтиниты образовались в основном из водорослей (обычно подвергшихся бактериальному разложению). Они имеют высокую способность к превращению в нефть.

2) Экзтиты – имеют высокое содержание водорода (однако ниже, чем у липтинитов), богаты алифатическими цепями и насыщенными нафтенами (алицик-лическими углеводородами), а также ароматическими циклами и кислородсодержа­щими функциональными группами. Это органическое вещество образуется из таких растительных материалов, как споры, пыльца, кутикулы и другие структурные части растений. Экзиниты обладают хорошей способностью к превращению в нефть и газовый конденсат , а на высших стадиях метаморфической эволюции и в газ.

3) Витршиты – имеют низкое содержание водорода, высокое содержание кис­лорода и состоят в основном из ароматических структур с короткими алифати­ческими цепями, связанными кислородсодержащими функциональными группами. Они образованы из структурированных древесных (лигноцеллюлозных) материалов и имеют ограниченную способность превращаться в нефть, но хорошую способность превращаться в газ.

4) Инертиниты – это черные непрозрачные обломочные породы (с высоким содержанием углерода и низким содержанием водорода), которые образовались из сильно изменившихся древесных предшественников. Они не обладают способностью превращаться в нефть и газ.

Главными факторами, по которым распознается газонефтеродная порода, являются содержание в ней керогена, тип органического вещества в керогене и стадия метаморфической эволюции этого органического вещества. Хорошими газонефте-родными породами считаются те, которые содержат 2-4% органического вещества такого типа, из которого могут образовываться и высвобождаться соответствующие углеводороды. При благоприятных геохимических условиях образование нефти может происходить из осадочных пород, содержащих органическое вещество типа липтинита и экзинита. Образование месторождений газа обычно происходит в горных породах, богатых витринитом или в результате термического крекинга первоначально образовавшейся нефти.

В результате последующего погребения осадков органического вещества под верхними слоями осадочных пород это вещество подвергается воздействию все более высоких температур, что приводит к термическому разложению керогена и образо­ванию нефти и газа. Образование нефти в количествах, представляющих интерес для промышленной разработки месторождения, происходит в определенных условиях по времени и температуре (глубине залегания), причем время образования тем больше, чем ниже температура (это нетрудно понять, если предположить, что реакция протекает по уравнению первого порядка и имеет аррениусовскую зависимость от температуры). Например, то же количество нефти, которое образовалось при температуре 100°С приблизительно за 20 миллионов лет, должно образоваться при температуре 90 °С за 40 миллионов лет, а при температуре 80°С – за 80 миллионов лет. Скорость образования углеводородов из керогена приблизительно удваивается при повышении температуры на каждые 10°С. Однако химический состав керогена. может быть чрезвычайно разнообразным, и поэтому указанное соотношение между временем созревания нефти и температурой этого процесса может рассматриваться лишь как основа для приближенных оценок.

Современные геохимические исследования показывают, что в континентальном шельфе Северного моря увеличение глубины на каждые 100 м сопровождается повышением температуры приблизительно на 3°С, а это означает, что богатые органическим веществом осадочные породы образовывали жидкие углеводороды на глубине 2500-4000 м в течение 50-80 миллионов лет. Легкие нефти и конденсаты, по-видимому, образовывались на глубине 4000-5000 м, а метан (сухой газ) – на глубине более 5000 м.

Природными источниками углеводородов являются горючие ископаемые - нефть и газ, уголь и торф. Залежи сырой нефти и газа возникли 100-200 миллионов лет назад из микроскопических морских растений и животных, которые оказались включенными в осадочные породы, образовавшиеся на дне моря, В отличие от этого уголь и торф начали образовываться 340 миллионов лет назад из растений, произраставших на суше.

Природный газ и сырая нефть обычно обнаруживаются вместе с водой в нефте­носных слоях, расположенных между слоями горных пород (рис. 2). Термин «при­родный газ» применим также к газам, которые образуются в природных условиях в результате разложения угля. Природный газ и сырая нефть разрабатываются на всех континентах, за исключением Антарктиды. Крупнейшими производителями природно­го газа в мире являются Россия, Алжир, Иран и Соединенные Штаты. Крупнейшими производителями сырой нефти являются Венесуэла, Саудовская Аравия, Кувейт и Иран.

Природный газ состоит главным образом из метана (табл. 1).

Сырая нефть представляет собой маслянистую жидкость, окраска которой может быть самой разнообразной – от темно-коричневой или зеленой до почти бесцветной. В ней содержится большое число алканов. Среди них есть неразветвленные алканы, разветвленные алканы и циклоалканы с числом атомов углерода от пяти до 40. Промышленное название этих циклоалканов-начтены. В сырой нефти, кроме того, содержится приблизительно 10% ароматических углеводородов, а также небольшое количество других соединений, содержащих серу, кислород и азот.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МОСКОВСКИЙ КОМИТЕТ ОБРАЗОВАНИЯ

ЮГО-ВОСТОЧНОЕ ОКРУЖНОЕ УПРАВЛЕНИЕ

Средняя общеобразовательная школа №506 с углубленным изучением экономики

ПРИРОДНЫЕ ИСТОЧНИКИ УГЛЕВОДОРОДОВ, ИХ ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ

Ковчегин Игорь 11б

Тищенко Виталий 11б

ГЛАВА 1. ГЕОХИМИЯ НЕФТИ И РАЗВЕДКА ГОРЮЧИХ ИСКОПАЕМЫХ

1.1 Происхождение горючих ископаемых

1.2 Газонефтеродные горные породы

ГЛАВА 2. ПРИРОДНЫЕ ИСТОЧНИКИ

ГЛАВА 3. ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ УГЛЕВОДОРОДОВ

ГЛАВА 4. ПЕРЕРАБОТКА НЕФТИ

4.1 Фракционная перегонка

4.2 Крекинг

4.3 Риформинг

4.4 Очистка от серы

ГЛАВА 5. ПРИМЕНЕНИЯ УГЛЕВОДОРОДОВ

5.1 Алканы

5.2 Алкены

5.3 Алкины

ГЛАВА 6. АНАЛИЗ СОСТОЯНИЯ НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ

ГЛАВА 7. ОСОБЕННОСТИ И ОСНОВНЫЕ ТЕНДЕНЦИИ ДЕЯТЕЛЬНОСТИ НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ГЛАВА 1. ГЕОХИМИЯ НЕФТИ И РАЗВЕДКА ГОРЮЧИХ ИСКОПАЕМЫХ

1 .1 Происхождение горючих ископаемых

Первые теории, в которых рассматривались принципы, определяющие залегание месторождений нефти, обычно ограничивались главным образом вопросом о местах ее скопления. Однако за последние 20 лет стало ясно, что для ответа на этот вопрос необходимо разобраться в том, почему, когда и в каких количествах произошло образование нефти в том или ином бассейне, а также понять и установить, в результате каких процессов она зарождалась, мигрировала и накапливалась. Эти сведения совершенно необходимы для повышения результативности разведки нефти.

Образование углеводородных ископаемых, согласно современным воззрениям, происходило в результате протекания сложной последовательности геохимических процессов (см. рис. 1) внутри исходных газонефтеродных горных пород. В этих процессах составные части различных биологических систем (веществ природного происхождения) превращались в углеводороды и в меньшей степени в полярные соединения с различной термодинамической устойчивостью - в результате осаждения веществ природного происхождения и последующего их перекрывания осадочными породами, под влиянием повышенной температуры и повышенного давления в поверхностных слоях земной коры. Первичная миграция жидких и газообразных продуктов из исходного газонефтеродного слоя и последующая их вторичная миграция (через несущие горизонты, сдвиги и т. п.) в пористые нефтенасыщенные горные породы приводит к образованию залежей углеводородных материалов, дальнейшая миграция которых предотвращается запиранием залежей между непористыми слоями горных пород.

В экстрактах органического вещества из осадочных горных пород биогенного происхождения обнаруживаются соединения с такой же химической структурой, какую имеют соединения, извлекаемые из нефти. Для геохимии имеют особо важное значение некоторые из таких соединений, которые считаются «биологическими метками» («химическими ископаемыми»). Подобные углеводороды имеют много общего с соединениями, встречающимися в биологических системах (например, с липидами, пигментами и метаболитами), из которых произошло образование нефти. Эти соединения не только демонстрируют биогенное происхождение природных углеводородов, но и позволяют получать очень важную информацию о газонефтеносных горных породах, а также о характере созревания и происхождения, миграции и биоразложения, приведших к образованию конкретных месторождений газа и нефти.

Рисунок 1 Геохимические процессы, приводящие к образованию ископаемых углеводородов.

1. 2 Газонефтеродные горные породы

Газонефтеродной горной породой считается мелкодисперсная осадочная порода, которая при естественном осаждении привела или могла привести к образованию и выделению значительных количеств нефти и (или) газа. Классификация таких горных пород основана на учете содержания и типа органического вещества, состояния его метаморфической эволюции (химических превращений, происходящих при температурах приблизительно 50-180 °С), а также природы и количества углеводородов, которые могут быть получены из него. Органическое вещество кероген Кероген (от греч. керос, что означает «воск», и ген, что означает «обра-зующий») - рассеянное в горных породах органическое вещество, нерастворимое в органических ратворителях, неокисляющих минеральных кислотах и основаниях. в осадочных горных породах биогенного происхождения может обнаруживаться в самых разнообразных формах, но его можно подразделить на четыре основных типа.

1) Липтиниты - имеют очень высокое содержание водорода, но низкое содержание кислорода; их состав обусловлен наличием алифатических углеродных цепей. Предполагается, что липтиниты образовались в основном из водорослей (обычно подвергшихся бактериальному разложению). Они имеют высокую способность к превращению в нефть.

2) Экзтиты - имеют высокое содержание водорода (однако ниже, чем у липтинитов), богаты алифатическими цепями и насыщенными нафтенами (алицик-лическими углеводородами), а также ароматическими циклами и кислородсодержащими функциональными группами. Это органическое вещество образуется из таких растительных материалов, как споры, пыльца, кутикулы и другие структурные части растений. Экзиниты обладают хорошей способностью к превращению в нефть и газовый конденсат Конденсат - углеводородная смесь, газообразная в месторождении, но кон-денсирующаяся в жидкость при извлечении на поверхность. , а на высших стадиях метаморфической эволюции и в газ.

3) Витршиты - имеют низкое содержание водорода, высокое содержание кислорода и состоят в основном из ароматических структур с короткими алифатическими цепями, связанными кислородсодержащими функциональными группами. Они образованы из структурированных древесных (лигноцеллюлозных) материалов и имеют ограниченную способность превращаться в нефть, но хорошую способность превращаться в газ.

4) Инертиниты - это черные непрозрачные обломочные породы (с высоким содержанием углерода и низким содержанием водорода), которые образовались из сильно изменившихся древесных предшественников. Они не обладают способностью превращаться в нефть и газ.

Главными факторами, по которым распознается газонефтеродная порода, являются содержание в ней керогена, тип органического вещества в керогене и стадия метаморфической эволюции этого органического вещества. Хорошими газонефте-родными породами считаются те, которые содержат 2-4% органического вещества такого типа, из которого могут образовываться и высвобождаться соответствующие углеводороды. При благоприятных геохимических условиях образование нефти может происходить из осадочных пород, содержащих органическое вещество типа липтинита и экзинита. Образование месторождений газа обычно происходит в горных породах, богатых витринитом или в результате термического крекинга первоначально образовавшейся нефти.

В результате последующего погребения осадков органического вещества под верхними слоями осадочных пород это вещество подвергается воздействию все более высоких температур, что приводит к термическому разложению керогена и образованию нефти и газа. Образование нефти в количествах, представляющих интерес для промышленной разработки месторождения, происходит в определенных условиях по времени и температуре (глубине залегания), причем время образования тем больше, чем ниже температура (это нетрудно понять, если предположить, что реакция протекает по уравнению первого порядка и имеет аррениусовскую зависимость от температуры). Например, то же количество нефти, которое образовалось при температуре 100°С приблизительно за 20 миллионов лет, должно образоваться при температуре 90 °С за 40 миллионов лет, а при температуре 80°С - за 80 миллионов лет. Скорость образования углеводородов из керогена приблизительно удваивается при повышении температуры на каждые 10°С. Однако химический состав керогена. может быть чрезвычайно разнообразным, и поэтому указанное соотношение между временем созревания нефти и температурой этого процесса может рассматриваться лишь как основа для приближенных оценок.

Современные геохимические исследования показывают, что в континентальном шельфе Северного моря увеличение глубины на каждые 100 м сопровождается повышением температуры приблизительно на 3°С, а это означает, что богатые органическим веществом осадочные породы образовывали жидкие углеводороды на глубине 2500-4000 м в течение 50-80 миллионов лет. Легкие нефти и конденсаты, по-видимому, образовывались на глубине 4000-5000 м, а метан (сухой газ) - на глубине более 5000 м.

ГЛАВА 2. ПРИРОДНЫЕ ИСТОЧНИКИ

Природными источниками углеводородов являются горючие ископаемые - нефть и газ, уголь и торф. Залежи сырой нефти и газа возникли 100-200 миллионов лет назад из микроскопических морских растений и животных, которые оказались включенными в осадочные породы, образовавшиеся на дне моря, В отличие от этого уголь и торф начали образовываться 340 миллионов лет назад из растений, произраставших на суше.

Природный газ и сырая нефть обычно обнаруживаются вместе с водой в нефтеносных слоях, расположенных между слоями горных пород (рис. 2). Термин «природный газ» применим также к газам, которые образуются в природных условиях в результате разложения угля. Природный газ и сырая нефть разрабатываются на всех континентах, за исключением Антарктиды. Крупнейшими производителями природного газа в мире являются Россия, Алжир, Иран и Соединенные Штаты. Крупнейшими производителями сырой нефти являются Венесуэла, Саудовская Аравия, Кувейт и Иран.

Природный газ состоит главным образом из метана (табл. 1).

Сырая нефть представляет собой маслянистую жидкость, окраска которой может быть самой разнообразной - от темно-коричневой или зеленой до почти бесцветной. В ней содержится большое число алканов. Среди них есть неразветвленные алканы, разветвленные алканы и циклоалканы с числом атомов углерода от пяти до 40. Промышленное название этих циклоалканов-начтены. В сырой нефти, кроме того, содержится приблизительно 10% ароматических углеводородов, а также небольшое количество других соединений, содержащих серу, кислород и азот.

Рисунок 2 Природный газ и сырая нефть обнаруживаются в ловушках между слоями горных пород.

Таблица 1 Состав природного газа

Уголь является древнейшим источником энергии, с которым знакомо человечество. Он представляет собой минерал (рис. 3), который образовался из растительного вещества в процессе метаморфизма. Метаморфическими называются горные породы, состав которых подвергся изменениям в условиях высоких давлений, а также высоких температур. Продуктом первой стадии в процессе образования угля является торф, который представляет собой разложившееся органическое вещество. Уголь образуется из торфа после того, как он покрывается осадочными породами. Эти осадочные породы называются перегруженными. Перегруженные осадки уменьшают содержание влаги в торфе.

В классификации углей используются три критерия: чистота (определяется относительным содержанием углерода в процентах); тип (определяется составом исходного растительного вещества); сортность (зависит от степени метаморфизма).

Таблица 2. Содержание углерода в некоторых видах топлива и их теплотворная способность

Самыми низкосортными видами ископаемых углей являются бурый уголь и лигнит (табл. 2). Они ближе всего к торфу и характеризуются сравнительно низким содержанием углерода и высоким содержанием влаги. Каменный уголь характеризуется меньшим содержанием влаги и широко используется в промышленности. Самый сухой и твердый сорт угля - это антрацит. Его используют для отопления жилищ и приготовления пищи.

В последнее время благодаря техническим достижениям становится все более экономичной газификация угля. Продукты газификации угля включают моноксид углерода, диоксид углерода, водород, метан и азот. Они используются в качестве газообразного горючего либо как сырье для получения различных химических продуктов и удобрений.

Уголь, как это изложено ниже, служит важным источником сырья для получения ароматических соединений.

Рисунок 3 Вариант молекулярной модели низкосортного угля. Уголь представляет собой сложную смесь химических веществ, в состав которых входят углерод, водород и кислород, а также небольшие количества азота, серы и примеси других элементов. Кроме того, в состав угля в зависимости от его сорта входит различное количество влаги и различных минералов.

Рисунок 4 Углеводороды, встречающиеся в биологических системах.

Углеводороды встречаются в природе не только в горючих ископаемых, но также и в некоторых материалах биологического происхождения. Натуральный каучук является примером природного углеводородного полимера. Молекула каучука состоит из тысяч структурных единиц, представляющих собой метилбута-1,3-диен (изопрен); ее строение схематически показано на рис. 4. Метилбута- 1,3-диен имеет следующую структуру:

Натуральный каучук. Приблизительно 90% натурального каучука, который добывается в настоящее время во всем мире, получают из бразильского каучуконосного дерева Hevea brasiliensis, культивируемого главным образом в экваториальных странах Азии. Сок этого дерева, представляющий собой латекс (коллоидный водный раствор полимера), собирают из надрезов, сделанных ножом на коре. Латекс содержит приблизительно 30% каучука. Его крохотные частички взвешены в воде. Сок сливают в алюминиевые емкости, куда добавляют кислоту, заставляющую каучук коагулировать.

Многие другие природные соединения тоже содержат изопреновые структурные фрагменты. Например, лимонен содержит два изопреновых фрагмента. Лимонен является главной составной частью масел, извлекаемых из кожуры цитрусовых, например лимонов и апельсинов. Это соединение принадлежит к классу соединений, называемых терпенами. Терпены содержат в своих молекулах 10 атомов углерода (С 10 -соединения) и включают два изопреновых фрагмента, соединенных друг с другом последовательно («голова к хвосту»). Соединения с четырьмя изопреновыми фрагментами (С 20 -соединения) называются дитерпенами, а с шестью изопреновыми фрагментами -тритерпенами (С 30 -соединения). Сквален, который содержится в масле из печени акулы, представляет собой тритерпен. Тетратерпены (С 40 -соединения) содержат восемь изопреновых фрагментов. Тетратерпены содержатся в пигментах жиров растительного и животного происхождения. Их окраска обусловлена наличием длинной сопряженной системы двойных связей. Например, в-каротин ответствен за характерную оранжевую окраску моркови.

ГЛАВА 3. ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ УГЛЕВОДОРОДОВ

Алканы, алкены, алкины и арены получают путем переработки нефти (см. ниже). Уголь тоже является важным источником сырья для получения углеводородов. С этой целью каменный уголь нагревают без доступа воздуха в ретортной печи. В результате получается кокс, каменноугольный деготь, аммиак, сероводород и каменноугольный газ. Этот процесс называется деструктивной перегонкой угля. Путем дальнейшей фракционной перегонки каменноугольного дегтя получают различные арены (табл. 3). При взаимодействии кокса с паром получают водяной газ:

Таблица 3 Некоторые ароматические соединения, получаемые при фракционной перегонке каменноугольного дегтя (смолы)

Из водяного газа с помощью процесса Фишера-Тропша можно получать алканы и алкены. Для этого водяной газ смешивают с водородом и пропускают над поверхностью железного, кобальтового или никелевого катализатора при повышенной температуре и под давлением 200-300 атм.

Процесс Фишера - Тропша позволяет также получать из водяного газа метанол и другие органические соединения, содержащие кислород:

Эта реакция проводится в присутствии катализатора из оксида хрома(III) при температуре 300°С и под давлением 300 атм.

В промышленно слаборазвитых странах такие углеводороды, как метан и этилен, все больше получают из биомассы. Биогаз состоит главным образом из метана. Этилен можно получать путем дегидратации этанола, который образуется в процессах ферментации.

Дикарбид кальция тоже получают из кокса, нагревая его смесь с оксидом кальция при температурах выше 2000°С в электрической печи:

При взаимодействии дикарбида кальция с водой происходит образование ацетилена. Такой процесс открывает еще одну возможность для синтеза ненасыщенных углеводородов из кокса.

ГЛАВА 4. ПЕРЕРАБОТКА НЕФТИ

Сырая нефть представляет собой сложную смесь углеводородов и других соединений. В таком виде она мало используется. Сначала ее перерабатывают в другие продукты, которые имеют практическое применение. Поэтому сырую нефть транспортируют танкерами или с помощью трубопроводов к нефтеперерабатывающим заводам.

Переработка нефти включает целый ряд физических и химических процессов: фракционную перегонку, крекинг, риформинг и очистку от серы.

4.1 Фракционная перегонка

Сырую нефть разделяют на множество составных частей, подвергая ее простой, фракционной и вакуумной перегонке. Характер этих процессов, а также число и состав получаемых фракций нефти зависят от состава сырой нефти и от требований, предъявляемых к различным ее фракциям.

Из сырой нефти прежде всего удаляют растворенные в ней примеси газов, подвергая ее простой перегонке. Затем нефть подвергают первичной перегонке , в результате чего ее разделяют на газовую, легкую и среднюю фракции и мазут. Дальнейшая фракционная перегонка легкой и средней фракций, а также вакуумная перегонка мазута приводит к образованию большого числа фракций. В табл. 4 указаны диапазоны температур кипения и состав различных фракций нефти, а на рис. 5 изображена схема устройства первичной дистилляционной (ректификационной) колонны для перегонки нефти. Перейдем теперь к описанию свойств отдельных фракций нефти.

Таблица 4 Типичные фракции перегонки нефти

Температура кипения, °С

Число атомов углерода в молекуле

Лигроин (нафта)

Смазочное масло и воск

Рисунок 5 Первичная перегонка сырой нефти.

Газовая фракция. Газы, получаемые при переработке нефти, представляют собой простейшие неразветвленные алканы: этан, пропан и бутаны. Эта фракция имеет промышленное название нефтезаводской (нефтяной) газ. Ее удаляют из сырой нефти до того, как подвергнуть ее первичной перегонке, или же выделяют из бензиновой фракции после первичной перегонки. Нефтезаводской газ используют в качестве газообразного горючего или же подвергают его сжижению под давлением, чтобы получить сжиженный нефтяной газ. Последний поступает в продажу в качестве жидкого топлива или используется как сырье для получения этилена на крекинг-установках.

Бензиновая фракция. Эта фракция используется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Особенности горения неразветвленных алканов не идеально соответствуют двигателям внутреннего сгорания. Поэтому бензиновую фракцию нередко подвергают термическому риформингу, чтобы превратить неразветвленные молекулы в разветвленные. Перед употреблением эту фракцию обычно смешивают с разветвленными алканами, циклоалканами и ароматическими соединениями, получаемыми из других фракций путем каталитического крекинга либо риформинга.

Качество бензина как моторного топлива определяется его октановым числом. Оно указывает процентное объемное содержание 2,2,4-триметилпентана (изооктана) в смеси 2,2,4-триметилпентана и гептана (алкан с неразветвленной цепью), которая обладает такими же детонационными характеристиками горения, как и испытуемый бензин.

Плохое моторное топливо имеет нулевое октановое число, а хорошее топливо-октановое число 100. Октановое число бензиновой фракции, получаемой из сырой нефти, обычно не превышает 60. Характеристики горения бензина улучшаются при добавлении в него антидетонаторной присадки, в качестве которой используется тетраэтилсвинец(IV), Рb(С 2 Н 5) 4 . Тетраэтилсвинец представляет собой бесцветную жидкость, которую получают при нагревании хлороэтана со сплавом натрия и свинца:

При горении бензина, содержащего эту присадку, образуются частицы свинца и оксида свинца(II). Они замедляют определенные стадии горения бензинового топлива и тем самым препятствуют его детонации. Вместе с тетраэтилсвинцом в бензин добавляют еще 1,2-дибромоэтан. Он реагирует со свинцом и свинцом(II), образуя бромид свинца(II). Поскольку бромид свинца(II) представляет собой летучее соединение, он удаляется из автомобильного двигателя с выхлопными газами.

Лигроин (нафта). Эту фракцию перегонки нефти получают в промежутке между бензиновой и керосиновой фракциями. Она состоит преимущественно из алканов (табл. 5).

Лигроин получают также при фракционной перегонке легкой масляной фракции, получаемой из каменноугольной смолы (табл. 3). Лигроин из каменноугольной смолы имеет высокое содержание ароматических углеводородов.

Бльшую часть лигроина, получаемого при перегонке нефти, подвергают риформингу для превращения в бензин. Однако значительная его часть используется как сырье для получения других химических веществ.

Таблица 5 Углеводородный состав лигроиновой фракции типичной ближневосточной нефти

Керосин . Керосиновая фракция перегонки нефти состоит из алифатических алканов, нафталинов и ароматических углеводородов. Часть ее подвергается очистке для использования в качестве источника насыщенных углеводородов-парафинов, а другая часть подвергается крекингу с целью превращения в бензин. Однако основная часть керосина используется в качестве горючего для реактивных самолетов.

Газойль . Эта фракция переработки нефти известна под названием дизельного топлива. Часть ее подвергают крекингу для получения нефтезаводского газа и бензина. Однако главным образом газойль используют в качестве горючего для дизельных двигателей. В дизельном двигателе зажигание топлива производится в результате повышения давления. Поэтому они обходятся без свечей зажигания. Газойль используется также как топливо для промышленных печей.

Мазут . Эта фракция остается после удаления из нефти всех остальных фракций. Большая его часть используется в качестве жидкого топлива для нагревания котлов и получения пара на промышленных предприятиях, электростанциях и в корабельных двигателях. Однако некоторую часть мазута подвергают вакуумной перегонке для получения смазочных масел и парафинового воска. Смазочные масла подвергают дальнейшей очистке путем экстракции растворителя. Темный вязкий материал, остающийся после вакуумной перегонки мазута, называется «битум», или «асфальт». Он используется для изготовления дорожных покрытий.

Мы рассказали о том, как фракционная и вакуумная перегонка наряду с экстракцией растворителями позволяет разделить сырую нефть на различные практически важные фракции. Все эти процессы являются физическими. Но для переработки нефти используются еще и химические процессы. Эти процессы можно подразделить на два типа: крекинг и риформинг.

4.2 Крекинг

В этом процессе крупные молекулы высококипящих фракций сырой нефти расщепляются на меньшие молекулы, из которых состоят низкокипящие фракции. Крекинг необходим потому, что потребности в низкокипящих фракциях нефти - особенно в бензине - часто опережают возможности их получения путем фракционной перегонки сырой нефти.

В результате крекинга кроме бензина получают также алкены, необходимые как сырье для химической промышленности. Крекинг в свою очередь подразделяется на три важнейших типа: гидрокрекинг, каталитический крекинг и термический крекинг.

Гидрокрекинг . Эта разновидность крекинга позволяет превращать высококипящие фракции нефти (воски и тяжелые масла) в низкокипящие фракции. Процесс гидрокрекинга заключается в том, что подвергаемую крекингу фракцию нагревают под очень высоким давлением в атмосфере водорода. Это приводит к разрыву крупных молекул и присоединению водорода к их фрагментам. В результате образуются насыщенные молекулы небольших размеров. Гидрокрекинг используется для получения газойля и бензинов из более тяжелых фракций.

Каталитический крекинг. Этот метод приводит к образованию смеси насыщенных и ненасыщенных продуктов. Каталитический крекинг проводится при сравнительно невысоких температурах, а в качестве катализатора используется смесь кремнезема и глинозема. Таким путем получают высококачественный бензин и ненасыщенные углеводороды из тяжелых фракций нефти.

Термический крекинг. Крупные молекулы углеводородов, содержащихся в тяжелых фракциях нефти, могут быть расщеплены на меньшие молекулы путем нагревания этих фракций до температур, превышающих их температуру кипения. Как и при каталитическом крекинге, в этом случае получают смесь насыщенных и ненасыщенных продуктов. Например,

Термический крекинг имеет особенно важное значение для получения ненасыщенных углеводородов, например этилена и пропена. Для термического крекинга используются паровые крекинг-установки. В этих установках углеводородное сырье сначала нагревают в печи до 800°С, а затем разбавляют его паром. Это увеличивает выход алкенов. После того как крупные молекулы исходных углеводородов расщепятся на более мелкие молекулы, горячие газы охлаждают приблизительно до 400СС водой, которая превращается в сжатый пар. Затем охлажденные газы поступают в ректификационную (фракционную) колонну, где они охлаждаются до 40°С. Конденсация более крупных молекул приводит к образованию бензина и газойля. Несконденсировавшиеся газы сжимают в компрессоре, который приводится в действие сжатым паром, полученным на стадии охлаждения газов. Окончательное разделение продуктов производится в колоннах фракционной перегонки.

Таблица 6 Выход продуктов крекинга с паром из различного углеводородного сырья (масс. %)

Продукты

Углеводородное сырье

Бута- 1,3 -диен

Жидкое топливо

В европейских странах главным сырьем для получения ненасыщенных углеводородов с помощью каталитического крекинга является лигроин. В Соединенных Штатах главным сырьем для этой цели служит этан. Его легко получают на нефтеперерабатывающих заводах как один из компонентов сжиженного нефтяного газа или же из природного газа, а также из нефтяных скважин как один из компонентов природных сопутствующих газов. В качестве сырья для крекинга с паром используются также пропан, бутан и газойль. Продукты крекинга этана и лигроина указаны в табл. 6.

Реакции крекинга протекают по радикальному механизму.

4.3 Риформинг

В отличие от процессов крекинга, которые заключаются в расщеплении более крупных молекул на менее крупные, процессы риформинга приводят к изменению структуры молекул или к их объединению в более крупные молекулы. Риформинг используется в переработке сырой нефти для превращения низкокачественных бензиновых фракций в высококачественные фракции. Кроме того, он используется с целью получения сырья для нефтехимической промышленности. Процессы риформинга могут быть подразделены на три типа: изомеризация, алкилирование, а также циклизация и ароматизация.

Изомеризация . В этом процессе молекулы одного изомера подвергаются перегруппировке с образованием другого изомера. Процесс изомеризации имеет очень важное значение для повышения качества бензиновой фракции, получаемой после первичной перегонки сырой нефти. Мы уже указывали, что эта фракция содержит слишком много неразветвленных алканов. Их можно превратить в разветвленные алканы, нагревая данную фракцию до 500-600°С под давлением 20-50 атм. Этот процесс носит название термического риформинга.

Для изомеризации неразветвленных алканов может также применяться каталитический риформинг . Например, бутан можно изомеризовать, превращая его в 2-метил-пропан, с помощью катализатора из хлорида алюминия при температуре 100°С или выше:

Эта реакция имеет ионный механизм, который осуществляется с участием карбка-тионов.

Алкилирование . В этом процессе алканы и алкены, которые образовались в результате крекинга, воссоединяются с образованием высокосортных бензинов. Такие алканы и алкены обычно имеют от двух до четырех атомов углерода. Процесс проводится при низкой температуре с использованием сильнокислотного катализатора, например серной кислоты:

Эта реакция протекает по ионному механизму с участием карбкатиона (СН 3) 3 С + .

Циклизация и ароматизация. При пропускании бензиновой и лигроиновой фракций, полученных в результате первичной перегонки сырой нефти, над поверхностью таких катализаторов, как платина или оксид молибдена(VI), на подложке из оксида алюминия, при температуре 500°С и под давлением 10-20 атм происходит циклизация с последующей ароматизацией гексана и других алканов с более длинными неразветвленными цепями:

Отщепление водорода от гексана, а затем от циклогексана называется дегидрированием . Риформинг этого типа в сущности представляет собой один из процессов крекинга. Его называют платформингом, каталитическим риформингом или просто риформингом. В некоторых случаях в реакционную систему вводят водород, чтобы предотвратить полное разложение алкана до углерода и поддержать активность катализатора. В этом случае процесс называется гидроформингом.

4.4 Очистка от серы

Сырая нефть содержит сероводород и другие соединения, содержащие серу. Содержание серы в нефти зависит от месторождения. Нефть, которую получают из континентального шельфа Северного моря, имеет низкое содержание серы. При перегонке сырой нефти органические соединения, содержащие серу, расщепляются, и в результате образуется дополнительное количество сероводорода. Сероводород попадает в нефтезаводской газ или во фракцию сжиженного нефтяного газа. Поскольку сероводород обладает свойствами слабой кислоты, его можно удалить, обрабатывая нефтепродукты каким-либо слабым основанием. Из полученного таким образом сероводорода можно извлекать серу, сжигая сероводород в воздухе и пропуская продукты сгорания над поверхностью катализатора из оксида алюминия при температуре 400°С. Суммарная реакция этого процесса описывается уравнением

Приблизительно 75% всей элементной серы, используемой в настоящее время промышленностью несоциалистических стран, извлекают из сырой нефти и природного газа.

ГЛАВА 5. ПРИМЕНЕНИЯ УГЛЕВОДОРОДОВ

Приблизительно 90% всей добываемой нефти используют в качестве топлива. Несмотря на то, что та часть нефти, которая используется для получения нефтехимических продуктов, мала, эти продукты имеют очень большое значение. Из продуктов перегонки нефти получают много тысяч органических соединений (табл. 7). Они в свою очередь используются для получения тысяч продуктов, которые удовлетворяют не только насущные потребности современного общества, но и потребности в комфорте (рис. 6).

Таблица 7 Углеводородное сырье для химической промышленности

Химические продукты

Метанол, уксусная кислота, хлорометан, этилен

Этилхлорид, тетраэтилсвинец(IV)

Метаналь, этаналь

Полиэтилен, полихлороэтилен (поливинилхлорид), полиэфиры, этанол, этаналь (ацетальдегид)

Полипропилен, пропанон (ацетон), пропеналь, пропан- 1,2,3-триол (глицерин), пропеннитрил (акрилонитрил), эпоксипропан

Синтетический каучук

Ацетилен

Хлороэтилен (винилхлорид), 1,1,2,2-тетрахлороэтан

(1-Метил)бензол, фенол, полифенилэтилен

Хотя различные группы химических продуктов, указанные на рис. 6, в широком смысле обозначены как нефтехимические продукты, поскольку их получают из нефти, следует отметить, что многие органические продукты, в особенности ароматические соединения, в промышленности получают из каменноугольной смолы и других источников сырья. И все же приблизительно 90% всего сырья для органической промышленности получают из нефти.

Ниже будут рассмотрены некоторые типичные примеры, показывающие использование углеводородов в качестве сырья для химической промышленности.

Рисунок 6 Применения продуктов нефтехимической промышленности.

5.1 Алканы

Метан является не только одним из важнейших видов топлива, но имеет еще и множество других применений. Он используется для получения так называемого синтез-газа , или сингаза. Подобно водяному газу, который получают из кокса и пара, синтез-газ представляет собой смесь моноксида углерода и водорода. Синтез-газ получают, нагревая метан или лигроин приблизительно до 750°С под давлением порядка 30 атм в присутствии никелевого катализатора:

Синтез-газ используется для получения водорода в процессе Габера (синтез аммиака).

Синтез-газ используется также для получения метанола и других органических соединений. В процессе получения метанола синтез-газ пропускают над поверхностью катализатора из оксида цинка и меди при температуре 250°С и давлении 50-100 атм, что приводит к реакции

Синтез-газ, используемый для проведения этого процесса, должен быть тщательно очищен от примесей.

Метанол нетрудно подвергнуть каталитическому разложению, при котором из него снова получается синтез-газ. Это очень удобно использовать для транспортировки синтез-газа. Метанол является одним из важнейших видов сырья для нефтехимической промышленности. Он используется, например, для получения уксусной кислоты:

Катализатором для этого процесса является растворимый анионный комплекс родия . Этот способ используется для промышленного получения уксусной кислоты, потребности в которой превосходят масштабы ее получения в результате процесса ферментации.

Растворимые соединения родия, возможно, станут использоваться в будущем в качестве гомогенных катализаторов процесса получения этан-1,2-диола из синтез-газа:

Эта реакция протекает при температуре 300°С и давлении порядка 500-1000 атм. В настоящее время такой процесс экономически невыгоден. Продукт этой реакции (его тривиальное название - этиленгликоль) используется в качестве антифриза и для получения различных полиэфиров, например терилена.

Метан используется также для получения хлорометанов, например трихлоро-метана (хлороформа). Хлорометаны имеют разнообразные применения. Например, хлорометан используется в процессе получения силиконов.

Наконец, метан все больше используется для получения ацетилена

Эта реакция протекает приблизительно при 1500°С. Чтобы нагреть метан до такой температуры, его сжигают в условиях ограниченного доступа воздуха.

Этан тоже имеет ряд важных применений. Его используют в процессе получения хлороэтана (этилхлорида). Как было указано выше, этилхлорид используется для получения тетраэтилсвинца(IV). В Соединенных Штатах этан является важным сырьем для получения этилена (табл. 6).

Пропан играет важную роль в промышленном получении альдегидов, например метаналя (муравьиного альдегида) и этаналя (уксусного альдегида). Эти вещества имеют особенно важное значение в производстве пластмасс. Бутан используется для получения бута-1,3-диена, который, как будет описано ниже, используется для получения синтетического каучука.

5.2 Алкены

Этилен . Одним из важнейших алкенов и вообще одним из самых важных продуктов нефтехимической промышленности является этилен. Он представляет собой сырье для получения многих пластмасс. Перечислим их.

Полиэтилен . Полиэтилен представляет собой продукт полимеризации этилена:

Полихлороэтилен . Этот полимер имеет еще название поливинилхлорид (ПВХ). Его получают из хлороэтилена (винилхлорида), который в свою очередь получают из этилена. Суммарная реакция:

1,2-Дихлороэтан получают в виде жидкости либо газа, используя в качестве катализатора хлорид цинка либо хлорид железа(III).

При нагревании 1,2-дихлороэтана до температуры 500°С под давлением 3 атм в присутствии пемзы образуется хлороэтилен (винилхлорид)

Другой способ получения хлороэтилена основан на нагревании смеси этилена, хлоро-водорода и кислорода до 250°С в присутствии хлорида меди(II) (катализатор):

Полиэфирное волокно. Примером такого волокна является терилен. Его получают из этан-1,2-диола, который в свою очередь синтезируют из эпоксиэтана (этиленоксида) следующим образом:

Этан-1,2-диол (этиленгликоль) используется также в качестве антифриза и для получения синтетических моющих средств.

Этанол получают гидратацией этилена, используя в качестве катализатора фосфорную кислоту на носителе из кремнезема:

Этанол используется для получения этаналя (ацетальдегида). Кроме того, его используют в качестве растворителя для лаков и политур, а также в косметической промышленности.

Наконец, этилен используется еще для получения хлороэтана, который, как было указано выше, применяется для изготовления тетраэтилсвинца(IV) - антидетонаторной присадки к бензинам.

Пропен . Пропен (пропилен), как и этилен, используется для синтеза разнообразных химических продуктов. Многие из них используются в производстве пластмасс и каучуков.

Полипропен . Полипропен представляет собой продукт полимеризации пропена:

Пропанон и пропеналь. Пропанон (ацетон) широко используется в качестве растворителя, а кроме того, применяется в производстве пластмассы, известной под названием плексигласа (полиметилметакрилат). Пропанон получают из (1-метилэтил) бензола или из пропан-2-ола. Последний получают из пропена следующим образом:

Окисление пропена в присутствии катализатора из оксида меди(II) при температуре 350°С приводит к получению пропеналя (акрилового альдегида): нефть переработка углеводород

Пропан-1,2,3-триол. Пропан-2-ол, пероксид водорода и пропеналь, получаемые в описанном выше процессе, могут использоваться для получения пропан-1,2,3-триола (глицерина):

Глицерин применяется в производстве целлофановой пленки.

Пропеннитрил (акрилонитрил). Это соединение используется для получения синтетических волокон, каучуков и пластмасс. Его получают, пропуская смесь пропена, аммиака и воздуха над поверхностью молибдатного катализатора при температуре 450°С:

Метилбута-1,3-диен (изопрен). Его полимеризацией получают синтетические каучуки. Изопрен получают с помощью следующего многостадийного процесса:

Эпоксипропан используется для получения полиуретановых пенопластов, полиэфиров и синтетических моющих средств. Его синтезируют следующим образом:

Бут-1-ен, бут-2-ен и бута-1,2-диен используются для получения синтетических каучуков. Если в качестве сырья для этого процесса используются бутены, их сначала превращают в бута-1,3-диен путем дегидрирования в присутствии катализатора - смеси оксида хрома(Ш) с оксидом алюминия:

5. 3 Алкины

Важнейшим представителем ряда алкинов является этин (ацетилен). Ацетилен имеет многочисленные применения, например:

– в качестве горючего в кислородно-ацетиленовых горелках для резки и сварки металлов. При горении ацетилена в чистом кислороде в его пламени развивается температура до 3000°С;

– для получения хлороэтилена (винилхлорида), хотя в настоящее время важнейшим сырьем для синтеза хлороэтилена становится этилен (см. выше).

– для получения растворителя 1,1,2,2-тетрахлороэтана.

5.4 Арены

Бензол и метилбензол (толуол) получают в больших количествах при переработке сырой нефти. Поскольку метилбензол получают при этом даже в бльших количествах, чем необходимо, часть его превращают в бензол. С этой целью смесь метилбензола с водородом пропускают над поверхностью платинового катализатора на носителе из оксида алюминия при температуре 600°С под давлением:

Этот процесс называется гидроалкилированием .

Бензол используется в качестве исходного сырья для получения ряда пластмасс.

(1-Метилэтил)бензол (кумол или 2-фенилпропан). Его используют для получения фенола и пропанона (ацетона). Фенол применяется для синтеза различных каучуков и пластмасс. Ниже указаны три стадии процесса получения фенола.

Поли(фенилэтилен) (полистирол). Мономером этого полимера является фенил-этилен (стирол). Его получают из бензола:

ГЛАВА 6. АНАЛИЗ СОСТОЯНИЯ НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ

Доля России в мировой добыче минерального сырья остается высокой и составляет по нефти 11.6%, по газу -- 28.1, углю -- 12-14%. По объему разведанных запасов минерального сырья Россия занимает ведущее положение в мире. При занимаемой территории в 10% в недрах России сосредоточено 12-13% мировых запасов нефти, 35% -- газа, 12% -- угля. В структуре минерально-сырьевой базы страны более 70% запасов приходится на ресурсы топливно-энергетического комплекса (нефть, газ, уголь). Общая стоимость разведанного и оцененного минерального сырья составляет сумму 28.5 трлн долларов, что на порядок превосходит стоимость всей приватизируемой недвижимости России.

Таблица 8 Топливно-энергетический комплекс Российской Федерации

Топливно-энергетический комплекс является опорой отечественной экономики: доля ТЭК в общем объеме экспорта в 1996 г. составит почти 40% (25 млрд долл.). Около 35% всех доходов федерального бюджета на 1996 г. (121 из 347 трлн руб.) планируется получить за счет деятельности предприятий комплекса. Ощутима доля ТЭК в общем объеме товарной продукции, которую российские предприятия планируют выпустить в 1996 г. Из 968 трлн руб. товарной продукции (в действующих ценах) доля предприятий ТЭК составит почти 270 трлн руб., или более 27% (табл. 8). ТЭК остается крупнейшим промышленным комплексом, осуществляющим капитальные вложения (более 71 трлн руб. в 1995 г.) и привлекающим инвестиции (1.2 млрд долл. только от Всемирного банка за два последних года) в предприятия всех своих отраслей.

Нефтяная промышленность Российской Федерации на протяжении длительного периода развивалась экстенсивно. Это достигалось за счет открытия и ввода в эксплуатацию в 50-70-х годах крупных высокопродуктивных месторождений в Урало-Поволжье и Западной Сибири, а также строительством новых и расширением действующих нефтеперерабатывающих заводов. Высокая продуктивность месторождений позволила с минимальными удельными капитальными вложениями и сравнительно небольшими затратами материально-технических ресурсов наращивать добычу нефти по 20-25 млн т в год. Однако при этом разработка месторождений велась недопустимо высокими темпами (от 6 до 12% отбора от начальных запасов), и все эти годы в нефтедобывающих районах серьезно отставали инфраструктура и жилищно-бытовое строительство. В 1988 г. в России было добыто максимальное количество нефти и газового конденсата -- 568.3 млн т, или 91% общесоюзной добычи нефти. Недра территории России и прилегающих акваторий морей содержат около 90% разведанных запасов нефти всех республик, входивших ранее в СССР. Во всем мире минерально-сырьевая база развивается по схеме расширения воспроизводства. То есть ежегодно необходимо передавать промысловикам новых месторождений на 10-15% больше, чем они вырабатывают. Это необходимо для поддержания сбалансированности структуры производства, чтобы промышленность не испытывала сырьевого голода. В годы реформ остро встал вопрос инвестиций в геологоразведку. На освоение одного миллиона тонн нефти необходимы вложения в размере от двух до пяти миллионов долларов США. Причем эти средства дадут отдачу только через 3-5 лет. Между тем для восполнения падения добычи необходимо ежегодно осваивать 250-300 млн т нефти. За минувшие пять лет разведано 324 месторождения нефти и газа, введено в эксплуатацию 70-80 месторождений. На геологию в 1995 г. было истрачено лишь 0.35% ВВП (в бывшем СССР эти затраты были в три раза выше). На продукцию геологов -- разведанные месторождения -- существует отложенный спрос. Однако в 1995 г. геологической службе все же удалось остановить падение производства в своей отрасли. Объемы глубокого разведочного бурения в 1995 г. возросли на 9% по сравнению с 1994 г. Из 5.6 трлн рублей финансирования 1.5 трлн рублей геологи получали централизованно. На 1996 г. бюджет Роскомнедра составляет 14 трлн рублей, из них 3 трлн -- централизованные инвестиции. Это лишь четверть вложений бывшего СССР в геологию России.

Сырьевая база России при условии формирования соответствующих экономических условий развития геологоразведочных работ может обеспечить на сравнительно длительный период уровни добычи, необходимые для удовлетворения потребностей страны в нефти. Следует учитывать, что в Российской Федерации после семидесятых годов не было открыто ни одного крупного высокопродуктивного месторождения, а вновь приращиваемые запасы по своим кондициям резко ухудшаются. Так, например, по геологическим условиям средний дебит одной новой скважины в Тюменской области упал с 138 т в 1975 г. до 10-12т в 1994 г., т. е. более чем в 10 раз. Значительно возросли затраты финансовых и материально-технических ресурсов на создание 1 т новой мощности. Состояние разработки крупных высокопродуктивных месторождений характеризуется выработкой запасов в объемах 60-90% от начальных извлекаемых запасов, что предопределило естественное падение добычи нефти.

В связи с высокой выработанностью крупных высокопродуктивных месторождений качество запасов изменилось в худшую сторону, что требует привлечения значительно больших финансовых и материально-технических ресурсов для их освоения. Из-за сокращения финансирования недопустимо уменьшились объемы геологоразведочных работ, и как следствие снизились приросты запасов нефти. Если в 1986-1990 гг. по Западной Сибири прирост запасов составлял 4.88 млрд т, то в 1991-1995 гг. из-за снижения объемов разведочного бурения этот прирост снизился почти вдвое и составил 2.8 млрд т. В создавшихся условиях для обеспечения потребностей страны даже на ближайшую перспективу требуется принятие государственных мер по наращиванию сырьевой оазы.

Переход к рыночным отношениям диктует необходимость изменения подходов к установлению экономических условий для функционирования предприятий, относящихся к горнодобывающим отраслям промышленности. В нефтяной отрасли, характеризующейся невозобновляющимися ресурсами ценного минерального сырья -- нефти, существующие экономические подходы исключают из разработки значительную часть запасов из-за неэффективности их освоения по действующим экономическим критериям. Оценки показывают, что по отдельным нефтяным компаниям по экономическим причинам не могут быть вовлечены в хозяйственный оборот от 160 до 1057 млн. т запасов нефти.

Нефтяная промышленность, имея значительную обеспеченность балансовыми запасами, в последние годы ухудшает свою работу. В среднем падение добычи нефти в год по действующему фонду оценивается в 20%. По этой причине, чтобы сохранить достигнутый уровень добычи нефти в России, необходимо ввдить новые мощности на 115-120 млн. т в год, для чего требуется пробурить 62 млн. м эксплуатационных скважин, а фактически в 1991 г. пробурено 27.5 млн м, а в 1995 - 9.9 млн. м.

Отсутствие средств привело к резкому сокращению объемов промышленного и гражданскоого строительства, особенно в Западной Сибири. Вследствие этого произошло уменьшение работ по обустройству нефтяных месторождений, строительству и реконструкции систем сбора и транспорта нефти, строительству жилья, школ, больниц и других объектов, что явилось одной из причин напряженной социальной обстановки в нефтедобывающих регионах. Программа строительства объектов утилизации попутного газа была сорвана. В результате в факелах сжигается ежегодно более 10 млрд. м3 нефтяного газа. Из-за невозможности реконструкции нефтепроводных систем на промыслах постоянно происходят многочисленные порывы трубопроводов. Только в 1991 г. по этой причине потеряно более 1 млн т нефти и нанесен большой урон окружающей среде. Сокращение заказов на строительство привело к распаду в Западной Сибири мощных строительных организаций.

Одной из основных причин кризисного состояния нефтяной промышленности является также отсутствие необходимого промыслового оборудования и труб. В среднем дефицит в обеспечении отрасли материально-техническими ресурсами превышает 30%. За последние годы не создано ни одной новой крупной производственной единицы по выпуску нефтепромыслового оборудования, более того, многие заводы этого профиля сократили производство, а выделяемых средств для валютных закупок оказалось недостаточно.

Из-за плохого материально-технического обеспечения число простаивающих эксплуатационных скважин превысило 25 тыс. ед., в том числе сверхнормативно простаивающих -- 12 тыс. ед. По скважинам, простаивающим сверхнормативно, ежесуточно теряется около 100 тыс. т нефти.

Острой проблемой для дальнейшего развития нефтяной промышленности остается ее слабая оснащенность высокопроизводительной техникой и оборудованием для добычи нефти и газа. К 1990 г. в отрасли половина технических средств имела износ более 50%, только 14% машин и оборудования соответствовало мировому уровню, потребность по основным видам продукции удовлетворялась в среднем на 40-80%. Такое положение с обеспечением отрасли оборудованием явилось следствием слабого развития нефтяного машиностроения страны. Импортные поставки в общем объеме оборудования достигли 20%, а по отдельным видам доходят и до 40%. Закупка труб достигает 40 - 50%.

...

Подобные документы

    Направления применения углеводородов, их потребительские качества. Внедрение технологии глубокой переработки углеводородов, их применение как холодильных агентов, рабочего тела датчиков элементарных частиц, для пропитки тары и упаковочных материалов.

    доклад , добавлен 07.07.2015

    Виды и состав газов, образующихся при разложении углеводородов нефти в процессах ее переработки. Использование установок для разделения предельных и непредельных газов и мобильных газобензиновых заводов. Промышленное применение газов переработки.

    реферат , добавлен 11.02.2014

    Понятие нефтяных попутных газов как смеси углеводородов, которые выделяются вследствие снижения давления при подъеме нефти на поверхность Земли. Состав попутного нефтяного газа, особенности его переработки и применения, основные способы утилизации.

    презентация , добавлен 10.11.2015

    Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.

    контрольная работа , добавлен 02.05.2011

    Задачи нефтеперерабатывающей и нефтехимической промышленности. Особенности развития нефтеперерабатывающей промышленности в мире. Химическая природа, состав и физические свойства нефти и газоконденсата. Промышленные установки первичной переработки нефти.

    курс лекций , добавлен 31.10.2012

    Значение процесса каталитического риформинга бензинов в современной нефтепереработке и нефтехимии. Методы производства ароматических углеводородов риформингом на платиновых катализаторах в составе комплексов по переработке нефти и газового конденсата.

    курсовая работа , добавлен 16.06.2015

    Физико-химическая характеристика нефти. Первичные и вторичные процессы переработки нефти, их классификация. Риформинг и гидроочистка нефти. Каталитический крекинг и гидрокрекинг. Коксование и изомеризация нефти. Экстракция ароматики как переработка нефти.

    курсовая работа , добавлен 13.06.2012

    Кривая истинных температур кипения нефти и материальный баланс установки первичной переработки нефти. Потенциальное содержание фракций в Васильевской нефти. Характеристика бензина первичной переработки нефти, термического и каталитического крекинга.

    лабораторная работа , добавлен 14.11.2010

    Характеристика и организационная структура ЗАО "Павлодарский НХЗ". Процесс подготовки нефти к переработке: ее сортировка, очистка от примесей, принципы первичной переработки нефти. Устройство и действие ректификационных колонн, их типы, виды подключения.

    отчет по практике , добавлен 29.11.2009

    Общая характеристика нефти, определение потенциального содержания нефтепродуктов. Выбор и обоснование одного из вариантов переработки нефти, расчет материальных балансов технологических установок и товарного баланса нефтеперерабатывающего завода.

Природные источники углеводородов Ф.И.О. Старчевая Арина Группа В-105 2013 г.

Природные источники Природными источниками углеводородов являются горючие ископаемые - нефть и газ, уголь и торф. Залежи сырой нефти и газа возникли 100-200 миллионов лет назад из микроскопических морских растений и животных, которые оказались включенными в осадочные породы, образовавшиеся на дне моря, В отличие от этого уголь и торф начали образовываться 340 миллионов лет назад из растений, произраставших на суше.

Природный газ и сырая нефть обычно обнаруживаются вместе с водой в нефтеносных слоях, расположенных между слоями горных пород (рис. 2). Термин «природный газ» применим также к газам, которые образуются в природных условиях в результате разложения угля. Природный газ и сырая нефть разрабатываются на всех континентах, за исключением Антарктиды. Крупнейшими производителями природного газа в мире являются Россия, Алжир, Иран и Соединенные Штаты. Крупнейшими производителями сырой нефти являются Венесуэла, Саудовская Аравия, Кувейт и Иран. Природный газ состоит главным образом из метана. Сырая нефть представляет собой маслянистую жидкость, окраска которой может быть самой разнообразной – от темно-коричневой или зеленой до почти бесцветной. В ней содержится большое число алканов. Среди них есть неразветвленные алканы, разветвленные алканы и циклоалканы с числом атомов углерода от пяти до 50. Промышленное название этих циклоалканов-начтены. В сырой нефти, кроме того, содержится приблизительно 10% ароматических углеводородов, а также небольшое количество других соединений, содержащих серу, кислород и азот.

природный газ используется и как топливо, и в качестве сырья для получения разнообразных органических и неорганических веществ. Вы уже знаете, что из метана, основного компонента природного газа, получают водород, ацетилен и метиловый спирт, формальдегид и муравьиную кислоту, многие другие органические вещества. В качестве топлива природный газ используют на электростанциях, в котельных системах водяного отопления жилых домов и промышленных зданий, в доменном и мартеновском производствах. Чиркая спичкой и зажигая газ в кухонной газовой плите городского дома, вы «запускаете» цепную реакцию окисления алканов, входящих в состав природного газа. , Кроме нефти, природного и попутного нефтяного газов, природным источником углеводородов является каменный уголь. 0н образует мощные пласты в земных недрах, его разведанные запасы значительно превышают запасы нефти. Как и нефть, каменный уголь содержит большое количество различных органических веществ. Кроме органических, в его состав входят и неорганические вещества, такие, например, как вода, аммиак, сероводород и конечно же сам углерод - уголь. Одним из основных способов переработки каменного угля является коксование - прокаливание без доступа воздуха. В результате коксования, которое проводят при температуре около 1000 °С, образуются: коксовый газ, в состав которого входят водород, метан, Угарный и углекислый газ, примеси аммиака, азота и других газов; каменноугольная смола, содержащая несколько сотен раз-Личных органических веществ, в том числе бензол и его гомологи, фенол и ароматические спирты, нафталин и различные гетероциклические соединения; надсмольная, или аммиачная вода, содержащая, как ясно из названия, растворенный аммиак, а также фенол, сероводород и другие вещества; кокс - твердый остаток коксования, практически чистый углерод. Кокс используется в производстве чугуна и стали, аммиак - в производстве азотных и комбинированных удобрений, а значение органических продуктов коксования трудно переоценить. Таким образом, попутный нефтяной и природный газы, каменный уголь не только ценнейшие источники углеводородов, но и часть уникальной кладовой невосполнимых природных ресурсов, бережное и разумное использование которых - необходимое условие прогрессивного развития человеческого общества.

Сырая нефть представляет собой сложную смесь углеводородов и других соединений. В таком виде она мало используется. Сначала ее перерабатывают в другие продукты, которые имеют практическое применение. Поэтому сырую нефть транспортируют танкерами или с помощью трубопроводов к нефтеперерабатывающим заводам. Переработка нефти включает целый ряд физических и химических процессов: фракционную перегонку, крекинг, риформинг и очистку от серы.

Сырую нефть разделяют на множество составных частей, подвергая ее простой, фракционной и вакуумной перегонке. Характер этих процессов, а также число и состав получаемых фракций нефти зависят от состава сырой нефти и от требований, предъявляемых к различным ее фракциям. Из сырой нефти прежде всего удаляют растворенные в ней примеси газов, подвергая ее простой перегонке. Затем нефть подвергают первичной перегонке, в результате чего ее разделяют на газовую, легкую и среднюю фракции и мазут. Дальнейшая фракционная перегонка легкой и средней фракций, а также вакуумная перегонка мазута приводит к образованию большого числа фракций. В табл. 4 указаны диапазоны температур кипения и состав различных фракций нефти, а на рис. 5 изображена схема устройства первичной дистилляционной (ректификационной) колонны для перегонки нефти. Перейдем теперь к описанию свойств отдельных фракций нефти.

Месторождения нефти содержат, как правило, большие скопления так называемого попутного нефтяного газа, который собирается над нефтью в земной коре и частично растворяется в ней под давлением вышележащих пород. Как и нефть, попутный нефтяной газ является ценным природным источником углеводородов. Он содержит в основном алканы, в молекулах которых от 1 до 6 атомов углерода. Очевидно, что по составу попутный нефтяной газ значительно беднее нефти. Однако, несмотря на это, он также широко используется и в качестве топлива, и в качестве сырья для химической промышленности. Еще несколько десятилетий назад на большинстве месторождений нефти попутный нефтяной газ сжигали как бесполезное приложение к нефти. В настоящее время, например, в Сургуте, богатейшей нефтяной кладовой России, вырабатывают самую дешевую в мире электроэнергию, используя как топливо попутный нефтяной газ.

Спасибо за внимание.



Последние материалы раздела:

Чем атом отличается от молекулы Сравнение атома и молекулы
Чем атом отличается от молекулы Сравнение атома и молекулы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Что такое молекула и чем она отличается от атома Что такое изотопы
Что такое молекула и чем она отличается от атома Что такое изотопы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы
Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы

Вся материя вокруг нас, которую мы видим, состоит из различных атомов. Атомы отличаются друг от друга строением, размером и массой. Существует...