Разница между диэлектриками и проводниками. Чем отличаются диэлектрики от проводников

Все вещества состоят из молекул, молекулы из атомов, атомы из положительно заряженных ядер вокруг которых располагаются отрицательные электроны. При определенных условиях электроны способны покидать свое ядро и передвигаться к соседним. Сам атом при этом становится положительно заряженным, а соседний получает отрицательный заряд. Передвижение отрицательных и положительных зарядов под действием электрического поля получило название электрического тока.

В зависимости от свойства материалов проводить электрический ток их делят на:

  1. Полупроводники.

Свойства проводников

Проводники отличаются хорошей электропроводностью . Это связано с наличием у них большого количества свободных электронов не принадлежащих конкретно ни одному из атомов, которые под действием электрического поля могут свободно перемещаться.

Большинство проводников имеют малое удельное сопротивление и проводят электрический ток с очень небольшими потерями. В связи с тем, что идеально чистых по химическому составу элементов в природе не существует, любой материал в своем составе содержит примеси. Примеси в проводниках занимают места в кристаллической решетке и, как правило, препятствуют прохождению свободных электронов под действием приложенного напряжения.

Примеси ухудшают свойства проводника. Чем больше примесей, тем сильнее они влияю на параметры проводимости.

Хорошими проводниками с малым удельным сопротивлением являются такие материалы:

  • Золото.
  • Серебро.
  • Медь.
  • Алюминий.
  • Железо.

Золото и серебро – хорошие проводники, но из-за высокой стоимости применяются там, где необходимо получить хорошие качественные проводники с малым объемом. Это в основном электронные схемы, микросхемы, проводники высокочастотных устройств у которых сам проводник изготовлен из дешевого материала (медь), который сверху покрыт тонким слоем серебра или золота. Это дает возможности при минимальном расходе драгоценного металла хорошие частотные характеристики проводника.

Медь и алюминий — более дешевые металлы. При незначительном снижении характеристик этих материалов, их цена на порядки ниже, что дает возможность для их массового применения. Применяют в электронике, в электротехнике. В электронике – это дорожки печатных плат, ножки радиоэлементов, радиаторы и др. В электротехнике очень широко применяется в обмотках двигателей, для прокладки электрических сетей высокого и низкого напряжения, разводку электричества в квартирах, домах, в транспорте.

Параметр проводимости очень сильно зависит от температуры самого материала. При увеличении температуры кристалла, колебания электронов в кристаллической решетке увеличивается, препятствуя свободному прохождению свободных электронов. При снижении – наоборот, сопротивление уменьшается и при некотором значении близком к абсолютному нулю, сопротивление становится нулевым и возникает эффект сверхпроводимости.

Свойства диэлектриков

Диэлектрики в своей кристаллической решетке содержат очень мало свободных электронов , способных переносить заряде под действием электрического поля. В связи с этим при создании разности потенциалов на диэлектрике, ток, проходящий через него такой незначительный, что считается равным нулю — диэлектрик не проводит электрический ток. Наряду с этим, примеси, содержащиеся в любом диэлектрике, как правило, ухудшают его диэлектрические свойства. Ток, проходящий через диэлектрик под действием приложенного напряжения в основном определяется количеством примесей.

Наибольшее распространение диэлектрики получили в электротехнике там, где необходимо защитить обслуживающий персонал от вредного воздействия электрического тока. Это изолирующие ручки разных приборов, устройств измерительной техники. В электронике – прокладки конденсаторов, изоляция проводов, диэлектрические прокладки необходимые для теплоотвода активных элементов, корпуса приборов.

Полупроводники – материалы, которые проводят электричество при определенных условиях, в другом случае ведут себя как диэлектрики.

Таблица: чем отличаются проводники и диэлектрики?

Диэлектрик
Наличие свободных электронов Присутствуют в большом количестве Отсутствуют, или присутствуют, но очень мало
Способность материалов проводить электрический ток Хорошо проводит Не проводит, или ток незначительно мал
Что происходит при увеличении приложенного напряжение Ток, проходящий через проводник, увеличивается согласно закону Ома Ток, проходящий через диэлектрик изменяется незначительно и, при достижения определенного значения, происходит электрический пробой
Материалы Золото, серебро, медь и ее сплавы, алюминий и сплавы, железо и другие Эбонит, фторопласт, резина, слюда, различные пластмассы, полиэтилен и другие материалы
Сопротивление от 10 -5 до 10 -8 степени Ом/м 10 10 – 10 16 Ом/м
Влияние посторонних примесей на сопротивление материала Примеси ухудшают свойство проводимости материала, что ухудшает его свойства Примеси улучшают проводимость материала, что ухудшает его свойства
Изменение свойств при изменении температуры окружающей среды При увеличении температуры – сопротивление увеличивается, при снижении – уменьшается. При очень низких температурах – сверхпроводимость. При увеличении температуры – сопротивление уменьшается.

В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Элементарные метал­лы являются проводниками электричества первого рода. Способ­ность металлов проводить электричество - их электрическая проводимость обусловлена наличием в них кристаллических решет­ках электронов, находящихся в состоянии проводимости. Энергетическое состояние электронов проводимости обусловлено расщеплением электронных уровней в зависимости от расстояния между центрами атомов в кристалле (рис. 73). Наличие электронов про­водимости может быть доказано посредством исследования эффекта Холла. Электроны, двигающиеся в электрическом поле, меняют направление в зависимости от приложенного магнитного поля, создавая поперечную разность потен­циалов; измерив последнюю, можно вычислить число электронов прово­димости на один атом.

Рис. 73. Расщепление энергетических уровней атома

в зоны при взаимодействии атомов в твердом теле

Взаимодействие электронов проводимости с ионами металла, находящимися в узлах кристаллической решетки, обуславливает большую теплопроводность металла.

Электроны проводимости в металлическом кристалле облада­ют большой подвижностью, однако за фазовую границу металли­ческого кристалла они не проникают. Для преодоления этой границы необходимо затратить энергию, называемую работой выхода электрона. Эта энергия может быть получена электронами в результате освещения или нагревания металла. При освещении поверхности металла от нее отрываются электроны; такое явление называют фотоэлектрическим эффектом. Очевидно, что отрыв электронов при фотоэлектрическом эффекте обусловлен энергией кванта света, падающего на поверхность металла.

На границе раздела двух различных металлов возникает контактная разность потенциалов. Ее возникновение обусловлено различной концентрацией электронов проводимости к различной работой выхода электронов у соприкасающихся металлов. Некоторые пары металлов обладают значительной контактной разностью потенциалов. Величина контактной разности потенциалов существенно зависит от температуры. В зависимости от поведения металлов в магнитном поле различают диамагнитные ,парамагнитные иферромагнитные металлы. Мерой магнитных свойств металлов, как и других веществ, служит магнитная восприимчивость, которая определяется восприимчивостью вещества к магнитным силовым линиям. Металлы с отрицательной восприимчивостью оказывают большее сопротивление магнитным силовым линиям, чем пустое пространство, и называются диамагнитными; металлы с положительной восприимчивостью хорошо проводят магнитные силовые линии и называются парамагнитными. Диамагнитные вещества, помещенные между полюсами сильного магнита, ориентируются перпендикулярно, а парамагнитные вещества - вдоль силовых линий. Металлы с особо высокой

магнитной восприимчивостью (например, железо) называются ферромагнитными . Парамагнитные металлы втягиваются в магнитное поле, а диамагнитные выталкиваются из него. Диа-

магнитным является, например бериллий и металлы подгрупп цинка, галлия, германия. Парамагнитными являются - щелочные, щелочноземельные и металлы побочных подгрупп периодической системы; ферромагнитных металлов немного - это железо, кобальт, никель, гадолиний и диспрозий. Ферромагнитные свойства металлов сохраняются лишь до определенной кри­тической температуры, называемой точкой Кюри, выше которой остаются лишь обычные парамагнитные свойства.

Непрозрачность металлов также обусловлена присутствием в кристаллической решетке (а также и в расплаве) свободных электронов. Подвижные электроны в металле гасят световые колебания, превращая их энергию в теплоту или, в определенных условиях, используя ее для высвобождения электронов с поверхности металла (фотоэлектрический эффект). Как известно, металлический блеск объясняется тем, что металлы отражают большую долю падающего на них света. Интенсивность блеска определяется долей поглощаемого света. Наиболее ярко блестят палладий и серебро. Большинство металлов почти полностью отражает свет всех длин волн спектра, в связи с чем они имеют белый или серый цвет. И только некоторые металлы (медь, золото, цезий) поглощают зеленый или голубой свет сильнее, чем свет других длин волн, в связи с чем, они окрашены в желтый или даже красный цвет. Этим объясняется способность всех металлов полностью отражать радиоволны, которая используется для обнаружения различных металлических объектов с помощью радиоволн (радиолокация).

Металлы относятся к веществам с очень хорошей электронной проводимостью (проводники первого рода). Их удельная электропроводностьот10 4 до10 6 ом -1 ∙см -1 , или в системе СИ от10 6 до10 8 сим∙м -1 (1 сим = 1 ом -1 ) . Несколько

меньшей проводимостью, чем чистые металлы, обладают их сплавы, некоторые интерметаллические соединения и различные карбиды, гидриды, нитриды метал­лов, являющиеся фазами переменного состава. Удельная проводимость металлов выражается уравнением

= neu ,

где n -концентрация электронов проводимости, см -3 ;е -

Заряд электрона, равный 1,6∙10 -19 к ,u -подвижность электронов,см 2 / (в∙сек) .

Если число атомов в 1 см 3 металла порядка10 22 , число валентных электронов каждого атома единица, топриu =100 см 2 / (в∙сек) бдет порядка10 5 ом -1 ∙см -1 .

Так как концентрация электронов проводимости n в данном металле практически постоянна и не зависит от температуры, тобудет зависеть только от тех факторов, которые влияют на подвижность электроновu . В частности, при повышении температуры увеличивается амплитуда колебаний положительных ионов металлической решетки. Из-за этого более интенсивно рассеиваются электроны и уменьшается их подвижность, вследствие чего электропроводность метал­лов при нагревании уменьшается. Наоборот, при приближении к аб­солютному нулю уменьшается амплитуда колебания ионов, кристалли­ческая решетка упорядочивается, уменьшается влияние ионов на электроны проводимости и облегчается продвижение последних в металле. Многие металлы в силу особых квантовых условий при низких температурах становятся сверхпроводниками.

Примеси в металле нарушают строение кристаллической решетки. Проводимость такого металла оказывается меньше, чем чистого. Имен­но по этой причине приходится, например, медь, идущую для изготовления проводов, тщательно очищать электролитическим рафини­рованием.

Диэлектрики в противоположность металлам характери­зуются жесткой локализацией валентных электронов около опреде­ленных атомов, находящихся в ковалентной связи с соседними ато­мами. В типично ионных решетках электроны тоже прочно удержива­ются около каждого иона. По этой причине диэлектрики имеют очень малую удельную электропроводность (от10 -10 до10 -22 ом -1 ∙ см -1 ) и обладают изолирующими свойствами.

К диэлектрикам относятся некоторые простые вещества (алмаз), подавляющее большинство органических соединений, керамические материалы, слюда, силикатные стекла и др. Особо важное значение имеют полимерные материалы как диэлектрики, используемые в качестве хороших изоляторов. К газообразным диэлектри­кам относятся N 2 ,SF 6 и др. В состав диэлектриков могут входить атомы металлических элементов, но атомы неметаллов входят обязательно, так как без них не существуют прочные ковалентные, ионные или ионно-ковалентные связи между атомами. Таких связей нет только в ожиженных и закристаллизованных газах нулевой группы эле­ментов периодической системы, которые также обладают свойствами диэлектриков.

Между металлами, как очень хорошими электронными проводниками, и диэлектриками, обладающими более или менее высокими изо­лирующими свойствами, находится громадная группа веществ с удельной электропроводностью от 10 -10 до10 4 ом -1 см -1 . Вещества этой группы называютполупроводниками . Под полупроводниками понимают обычно неметаллические проводники с электронным механизмом тока.

Сравнивая свойства их с металлами и диэлектриками, можно нагляднее всего характеризовать полупроводники.

При повышении температуры проводимость полупроводников в отличие от металлов обычно возрастает. Электропроводность диэлектриков тоже возрастает. При температуре, близкой к абсолютному нулю, проводимость полупроводников

и диэлектриков практически нулевая. По электрическим свойствам полупроводники стоят ближе к диэлектрикам, чем к металлам, от которых они имеют принципиальное качественное отличие.

По сравнению с металлами проводимость полупроводников не уменьшается, а увеличивается при введении ничтожных количеств примесей, при появлении других дефектов строения кристаллической решетки, при действии различных излучений. Электрофизические свойства полупроводниковых соединений весьма чувствительны к отклонениям от стехиометрического состава. В отличие от металлов полупроводники хрупки и менее теплопроводны, хуже отражают видимые лучи.

Малая проводимость их по сравнению с металлами вызвана не тем, что подвижность носителей заряда сильно отличается в металлах и полупроводниках, а главным образом тем, что ток в последних пере­носится небольшой частью электронов, например, стомиллионной долей от общего числа валентных электронов. Уменьшение при охлаждении полупроводников может быть объяснено только быстрым уменьшением числа электронов проводимостиn , так как известно, что подвижность электронов возрастает при охлаждении. Стремлениеиn к нулю приТ → 0 указывает на то, что электроны проводи­мости в полупроводниках создаются тепловым движением (или дру­гими видами энергии, сообщенной извне). Это основное отличие полупроводников от металлов.

Объяснение электропроводности металлов, полупроводников и диэлектриков дается на основе квантовой теории строения кристалли­ческих тел - так называемой зонной теории. Рассмотрим некоторые общие положения этой теории. Переход атомных паров в кристаллическое вещество можно рассматривать как химическую реакцию, так как оптические, термодинамические, электрофизические и другие свойства твердых тел отличаются от свойств газов. Важно отметить, что атомные спектры газов имеют линейчатое строение, а спектры твер­дых тел имеют сплошной характер или полосатую, очень сложную структуру. Уже при взаимодействии двух одинаковых атомов дискретные атомные энергетические уровни расщепляются и превращаются в полосы. Тем большее расщепление уровней происходит, когда большое числоN атомов, например лития, сближается с далеких расстояний до расстояний, на которых они находятся в кристаллической решетке. На рис. 74,а это расстояние между ядрами обозначено на оси абсцисс буквойd 0 . По оси ординат отложена энергия. Находясь на больших расстояниях, атомы не взаимодействуют друг с другом, и диаграмма уровней будет такая же, как и для изолированного атома лития(ls 2 2s 1 ) . При сближении атомов начнется взаимодействие между ними, прежде всего у каждого из них станет расщепляться уровень валентных электронов(2s) . Уровень(2s) расщепляется в систему весь­ма близко расположенныхN уровней, образуя целую полосу (зону) уровней. Более глубокие уровни при образовании кристалла ока­зываются совсем не расщепленными или только незначительно рас­щепленными.

Если ширина зоны валентных состояний в кристалле равна 1 эв , а число атомовN , образующих1 см 3 кристалла, имеет порядок10 22 , то энергетические уровни в зоне расположены в среднем на расстоя­ниях1 / 10 22 эв друг от друга. Между зонами состояний1s и2s в крис­талле лития находится область неразрешенных состояний (запрещен­ная зона).

Заполнение уровней разрешенных зон электронами подчиняется принципу Паули, поэтому число электронов не может быть больше числа возможных состояний в данной зоне. Максимальное число электронов в зоне должно быть не больше qN (гдеq - степень вырождения исходных уровней атома. Следовательно, в зонеs могут находиться лишь2 N электронов, так

как степень вырождения s- уровней равна двум (из-за двух различных значений спинового числа). В зонер могут находиться максимум6 N электронов (из-за шести­кратного вырожденияр - уровней) и т. д.

Рис. 74. Расщепление энергетических уровней ато­ма в зоны при взаимодействии атомов в твердом теле:

а - для лития;б - для бериллия

На основе зонной теории легко объяснима электропроводность твердого тела. Например, она объясняет электропроводность лития и других щелочных металлов У них валентная зона занята только наполовину, так как N атомов имеютN валентных электронов (по одномуs - электрону на атом), а число мест вs - зоне2 N . Незаполненность верхней (валентной) зоны порождает электронную проводимость, характерную для металла. Действительно, под влиянием электрического поля валентные электроны должны начать движение к положительному полюсу, т. е. приобретать дополнительную энергию. Такое наращивание этой энергии очень малыми порциями (почти не­прерывное) возможно, если в зоне валентных состояний есть уровни, свободные от электронов. Если зона валентных состояний полностью заполнена электронами, то проводимость должна отсутствовать, т. е. тело должно иметь свойства диэлектрика. В полностью заполненной зоне электроны не могут наращивать энергию малыми порциями, так как принцип Паули запрещает переходы внутри заполненной зоны.

С этой точки зрения атомы бериллия и других элементов 2-й группы имеют полностью заполненную s- зону валентных состояний:N атомов, образующих кристалл, поставляют2 N электронов (по дваs - электрона каждый), что отвечает числу возможных состояний в зоне. Однако кристаллы этих веществ не являются изоляторами (диэлектриками) и хорошо проводят ток, как металлы. Это объясняется следующим. При сближении атомов бериллия и других элементов 2-й группы до расстояния, равного параметру решеткиd 0 , расщепленные уровниs- ир- состояний перекрывают друг друга (рис. 74,б ) и образуют объединенную зонуsp- состояний, в которой имеется8 N мест. Таким образом, верхняяsp- зона имеет толькозанятых мест в кристаллах элементов 2-ой группы,мест остаются свободными. Поэтому указанные вещества имеют металлическую проводимость. У других металлов тоже только частично заполнена электронами верхняя (валентная) энергетическая зона.

Дискретным уровням атома в твердом теле соответствует всегда дискретная система разрешенных зон, разделенных запретными зо­нами. Как правило, если электроны образуют в атоме или молекуле законченную группу, то при объединении их в твердое или жидкое тело создаются зоны, все уровни которых заполнены, поэтому такие вещества будут обладать при абсолютном нуле свойствами изолято­ров. Сюда относятся решетки благородных газов, молекулярные и ионные решетки соединений с насыщенными связями. В решетках алмаза, кремния, германия, - олова, соединений типаA I II B V ,A II B VI ,CSi каждый атом связан единичными валентными свя­зями с четырьмя ближайшими соседями, так что вокруг него обра­зуется законченная группа электроновs 2 p 6 и валентная зона оказывается заполненной.

Полупроводники и диэлектрики отличаются от металлов тем, что валентная зона у них при Т 0 К всегда полностью

заполнена электронами, а ближайшая свободная зона (зона проводимости) отделена от валентной зоной запрещенных состояний. Ширина запрещенной зоны Δ E у полупроводников - от десятых долей электрон-вольт до3 Эв (условно), а у диэлектриков - от3 до5 Эв . Если между полупро­водниками и диэлектриками имеется только количественное различие, то отличие их от металлов качественное. Чтобы проходил ток в метал­ле, не требуется никакого другого воздействия, кроме наложения электрического поля, так как валентная зона в металле не заполнена или перекрывается с зоной проводимости (рис. 75,а ).

Для возбуждения проводимости в полупроводнике необходимо к электрону, находящемуся в заполненной валентной зоне, подвести энергию, достаточную для преодоления зоны запрещенных состояний. Только при поглощении энергии не меньше, чем Δ E , электрон будет переброшен из верхнего края валентной зоны в свободную зону (зону проводимости). Если этот энергетический порог преодолен, то чистый (собственно) полупроводник имеет электронную проводимость. Чем меньше ширина запрещенной зоныΔ Е , тем больше проводимость при данной температуре. Так как у диэлектриковΔ Е очень велика, то проводимость их очень мала.

При приближении к абсолютному нулю термическое возбуждение оказывается недостаточным, и полупроводники становятся диэлектриками, а металлы становятся сверхпроводниками. Чем выше температура и чем более интенсивно полупроводник облучается квантами с энергией hне меньшеΔ Е , тем больше проводимость собственно полупроводника, так как увеличивается число электронов, перебрасываемых из валентной зоны в зону проводимости.

Для чистых полупроводников при убывании частоты падающего света коэффициент поглощения при некотором значении резко падает, и материал становится прозрачным для лучей с меньшими частотами. Этот участок быстрого спада поглощения называется краем собственного поглощения. Длина волныи частота , отвечающая краю собственного поглощения, приближенно определяются условиями

Рис. 75. Схема энергетических зон:

а - в металле;б - в полупроводнике;в - в диэлектрике;

Δ Е - ширина запрещенной зоны

h = hC / = Δ Е,

где Δ Е называется оптической шириной запрещенной зоны.

Энергия квантов видимого света лежит в пределах 1,5 - 3,0 эв , т. е. обычно превышает энергию возбуждения проводимости(Δ Е) . Если в полупроводнике есть некоторое количество примесей, он ста­новится непрозрачным в широкой области частот - от ультрафиолетовой вплоть до радиочастот.

Металлы при облучении светом практически не изменяют проводимость, так как число электронов проводимости в них не изменяется.

Уход электрона из валентной зоны полупроводника в зону проводимости оставляет свободное место (дырку) в валентной зоне с положи­тельным зарядом, численно равным заряду электрона. Таким образом, дыркой называется освобожденное от электрона место в области нарушенной ковалентной связи, соединяющей соседние атомы собственно полупроводника, имеющее единичный положительный заряд.

На рис. 76 изображены схемы появления дырки в атомной решетке элементарного полупроводника и возникновение электрона проводи­мости. Электрон, появившийся в междоузлии, является подвижным носителем заряда. Такие электроны, как и дырки, могут свободно пе­ремещаться по кристаллу (диффундировать). Если поместить кристалл в электрическое поле с напряжением, падающим справа налево, то «свободный» электрон приобретает направленное движение против поля (вправо). На место образовавшейся дырки (+) перейдет электрон из какого-либо места соседней связи левее дырки. Таким образом, образуется новая дырка вместо прежней. Следовательно, дырка перемещается по направлению поля (влево) при скачках электронов в валентной зоне, совершающихся слева направо, как показано на рис. 76,а (стрелками). Перенос заряда электронами валентной зоны называют дырочным. Таким образом, в собственных полупроводниках бывает двоякий механизм проводимости: электронный и дырочный. Удельная электропроводность полупроводника в общем случае выражается уравнением

= neu n + peu p ,

где u n иu p - подвижности соответственно электронов и дырок;n иp - их концентрации.

В собственном полупроводнике

n = p = Ae,

где k - константа Больцмана, равная1,38∙10 -16 эрг /град , или0,863·10 - 4 эв /град ;А для полупроводников с ковалентными связями (на­пример, кремния и германия) пропорциональнаТ 1,5 , а подвижности носителей заряда пропорциональныТ -1,5 , поэтому без большой погрешности можно написать считая 0 - постоянной величиной для данного полупроводника.

= 0 e,

Рис. 76. Схема разрыва валентной связи и появление

свободного электрона и дырки как носителей заряда:

а - в плоском изображении;б - в зонной энергетической диаграм­ме;А - атомы кремния или германия;(:) - валентные электроны, осуществляющие связь соседних атомов;(+) - дырка;

(-) - свободный электрон;Е с - нижний уровень свободной зоны;

Е в - верхний уровень валентной зоны

Логарифмируя, получим

ln = ln 0 -

Это уравнение прямой линии ln = f с угловым коэффициентомtg = - . Отсюда

Δ E = - 2 k tg ,

где - угол между прямой и положительным направлением оси1/Т .

Так как этот угол всегда тупой, то tg < 0 , аΔЕ > 0 . ЗдесьΔ Е называют термической шириной запрещенной зоны, т. е. вычисленной из температурного хода проводимости.

Возникновение пары электрон - дырка за счет нарушения нормаль­но заполненной связи (НЗ) можно записать в виде уравнения обратимой реакцииНЗ + Δ Е
+
(где- электрон проводимости, - дырка). При заданной температуре устанавливается динамическое равновесие. Процесс, идущий слева направо, является генерацией электронов и дырок, а обратный процесс называется рекомбинацией электронов и дырок. При повышении температуры в соответствии с принципом Ле Шателье это равновесие сдвигается вправо. При данной температуре по закону действия масс можно записать константу равновесия так:K = np / [НЗ] . Из того, что практически очень большая величина[НЗ] постоянна, следует

np = const

Нормально заполненных связей практически столько, сколько свя­зей в 1 см 3 . Например, в1 см 3 германия связей(6,02 ∙ 10 23 ∙ 5,32 / 72,59) x 2 = 9,0 ∙ 10 22 (здесь5,32 - плотность германия,г/см 3 ;72,59 - его атомная масса). Дробь, представляющая собой число атомов герма­ния в1 см 3 , умножается на 2 потому, что каждый атом имеет 4 связи с соседними атомами, но каждая связь соединяет два атома.

Для беспримесного полупроводника n = p = n i (n i - от словаintrinsic - собственный); поэтому можно представить

np = n.

Это значит: произведение концентраций электронов проводимости и дырок в полупроводнике при постоянной температуре постоянное, рав­ное произведению концентраций их в собственном полупроводнике при той же температуре и не зависит от характера и количества содержа­щихся в нем примесей. (Сравните эти закономерности с законами равновесия между ионами Н + иОН - в воде и водных растворах.)

Для германия при 300 0 К np = 6,25 ∙ 10 26 . Отсюда концентрация электронов и дырок в беспримесном германииn = p = n i =2,5 ∙ 10 13 см -3 . Для кремнияn i примерно на три порядка меньше.

Примесные полупроводники. Кроме электронов и дырок, появляющихся одновременно при нарушении валентных связей в собственном полупроводнике, могут быть также и носители зарядов, происхождение которых связано с наличием атомов примесей. В настоящее время удается изготовить полупроводники очень высокой чистоты с концентрацией примесей порядка10 -10 ат. % , однако идеально беспримесных полупроводников вообще нет.

Наиболее чистые образцы германия имеют удельную электропроводность порядка 0,01 - 0,02 ом -1 см -1 . Примеси, вводимые в высокоочищенные образцы полупроводников, сильно увеличивают электропроводность, а значит, уменьшают удельное сопротивление. Например, при введении примерно10 15 атомов сурьмы в1 см 3 особо чистого германия(4 ∙ 10 -6 вес. %) с удельной проводимостью0,017 ом -1 ∙ см -1 последняя увеличивается примерно на порядок, а сопротивление падает с60 до4 - 10 ом ∙ см .Полупроводники, содержащие примеси (реальные полупроводники), называются примесными. Примеси в полупроводниках принято делить на донорные и акцепторные. Первые создают электронную проводимость, а вторые - дырочную.

Рассмотрим примеры влияния на проводимость германия и кремния примесей замещения. Если в кристаллическую решетку их ввести атом сурьмы или другого элемента V группы, то он, став на место атома германия (или кремния) в узле решетки, образует валентные связи с четырьмя соседними ато-

мами германия, расположенными по вершинам окружающего его тетраэдра. Так как у элементов V группы во внешней оболочке 5 валентных электронов, то один из них будет избыточным и не примет участие в образовании связей. Такой электрон оказывается слабо связанным со своим атомом в кристалле; чтобы его отделить от атома и перевести в междоузлие, нужно затратить мало энергии. В зонной модели это значит, что для перевода такого электрона в зону проводимости необходимо затратить гораздо меньше энергии, чем для перевода электрона с потолка валентной зоны до нижнего края зоны проводимостиΔ Е . Значит, уровни, на которых будут находиться такие электроны, должны располагаться в запрещенной зоне вблизи от дна зоны проводимости (на уровнеЕ Д на рис. 77,б ).

Уже при невысокой температуре эти электроны получают достаточное количество энергии (Δ Е Д ) - порядка сотых долей электрон - вольта для перехода в зону проводимости. Но это не

оставит дырки в валентной зоне, зато у атома сурьмы появится единичный положительный заряд (неподвижный). Δ Е Д можно назвать энергией активации донорной примеси. Увеличив концентрацию сурьмы в германии, мы тем самым увеличим концентрацию свободных электронов и положительных ионов сурьмы, не увеличив концентрацию дырок. Наоборот, по концентрация дырок должна уменьшаться во столько раз, во сколько увеличивается концентрация электроновn . В этом случае электроны станут основными носителями заряда, а дырки – не основными. Такие полупроводники по преимуществу с электронной проводимостью назы­ваются полупроводникамиn - типа (от лат.negative - отрицательный).

Если вводить в кристаллическую решетку германия (кремния) атом галлия или другого элемента Ш А подгруппы, то у атома замещающей примеси не хватит одного электрона для осуществления четырех нормальных связей с соседними атомами германия. Одна из связей будет незаполненной (одноэлектронной), но атом галлия и смежный с ним атом германия

будут электронейтральными. Однако при небольшом возбуждении электрон из какой-либо нормальной соседней связи между атомами германия может перейти в место незаполненной

связи. Тогда у атома галлия появится отрицательный заряд,

Рис. 77. Модель образования электронной примесной

проводимости в кремнии и германии:

а - в плоском изображении;б Е Д - донорный уровень;Δ Е Д - энергия активации донора;1 + - за­ряд иона донора (остальные обозначения те же, что и на рис. 76)

а где-то вблизи возникнет дырка (рис. 78). Таким легированием германия (кремния) элементами III A подгруппы можно повышать концентрацию дырок, которые станут основными носителями подвижных зарядов, а электроны – не основными. Так как энергия возникновения дырки вблизи акцепторной примесиΔ Е а тоже порядка сотых долейЭв , то появление галлия в решетке германия как примеси замещения, по - видимому, приводит к появлению локального уровняЕ а вблизи верхнего края валентной зоны (рис. 78,6 ). Уже при невысокой температуре электроны из валентной зоны переходят на этот акцепторный уровеньЕ а , оставляя дырку в валентной зоне. Полупроводники с избытком дырок (с акцепторными примесями) называются дырочными илир- типа полупроводниками (от лат.positive - положительный).

Атомы замещающей примеси в кристаллах германия и кремния действуют как донорные примеси, если у них валентных электронов больше четырех, и как акцепторные примеси,

если валентных электронов в атомах замещающих примесей меньше четырех. Например, атомы цинка, замещающие атомы кремния в решетке, действуют как двойные акцепторы.

Если примесные атомы образуют твердые растворы внедрения в полупроводнике, то атомы металлов играют роль доноров, а атомы не­металлов - роль акцепторов. Очень важно различать, в какое поло­жение попадают атомы примеси в решетку. Например, при малой концентрации магния в решетке GaAs (ниже10 18 см -3 ) они действуют как доноры, являясь атомами внедрения, а при большой концентрации начинают действовать как акцепторы, так как становятся заместителя­ми атомов галлия в решетке. Атомы лития и меди, как примеси

Рис. 78. Модель образования дырочной примесной

про­водимости в кремнии или в германии:

а - в плоском изображении;б - в зонной энергетической диаграмме;Е а - акцепторный уровень;Δ Е а - энергия активации акцептора;- электрон перекочевавший из места валентной связи между атомамиА и оставивший там дырку(+) ;

    Заряд иона акцептора (остальные обозначения те же,

    что и на рис. 76)

внедрения в германий, являются донорами. Так же ведет себя медь в арсениде индия.

В полупроводниковых соединениях чем больше будет разность электроотрицательностей атомов в решетке, тем больше степень ионности связей. Это оказывает определенное влияние на свойства полупровод­ника, так как с увеличением степени ионности связей обычно увеличи­вается ширина запрещенной зоны.

В случае замещения более электроотрицательного атома полупроводникового соединения атомами с большим числом валентных электронов, чем у замещаемого атома (например, атомов мышьяка в GaAs атомами селена или теллура), примеси являются донорами, а поэтому возникаетn - проводимость. Если же примесные атомы имеют меньшее число валентных электронов, то они являются акцепторами, и поэтому появляетсяр- тип проводимости. То же правило доминирует и при за­мещении менее электроотрицательного атома другими. Например, при замещенииGa вGaAs атомамиZn, Cd, Mg возникают акцепторные центры ир- тип проводимости. Однако из этих правил есть и исключения, которые пока не нашли себе объяснения. Требуется дальнейшее изучение этих вопросов.

При сильно выраженном ионном характере связи возможно иное объяснение появлению донорных и акцепторных центров в случае образования твердых растворов замещения. Например, если в сульфидах цинка, кадмия, свинца атомы серы замещать атомами хлора, то можно думать, что донорные уровни возникают не потому, что хлор отдает один из своих электронов в зону проводимости, а потому, что сера способна отнимать два электрона от атома металла, а хлор только один. В результате часть электронов, отданная атомами металла, но не при­соединенная к атомам хлора, и создает n - проводимость.

Локальные уровни в запрещенной зоне полупроводника могут появиться не только из-за примесей, но и в результате

образования в ре­шетке протяженных дефектов. Например, при

образовании дислокаций в кристаллах германия и кремния создаются акцепторные уровни вследствие того, что ненасыщенные валентные связи около таких дефектов могут захватывать электроны, т. е. играть роль акцепторных центров. Например, в германии дислокации образуют акцепторные уровни, отстоящие примерно на 0,2 эв от дна зоны проводимости. Нарушение стехиометрического состава соединений из-за образования вакансий в различных подрешетках полупроводникового соединения также приводит к появлению донорных или акцепторных центров. При появлении вакансий в подрешетке неметаллических ато­мов возникают донорные уровни иn - тип проводимости (ZnO 1 - x , CdS 1 - x , PbS 1 - x и т. п.). При появлении вакансий в подрешетке металлических атомов возникают акцепторные уровни ир- тип проводимости (С u 2 - x О, T i 1 - x О, Pb 1 - x S и т.п.).

Это правило находит себе объяснение в том, что при удалении атома неметалла из решетки остаются слабо связанные электроны у атомов металла, окружающих пустой узел. Эти электроны легко отделяются от атомов металла и становятся электронами проводимости. При удале­нии атома металла из решетки у атомов неметалла, окружающих пус­той узел, остаются ненасыщенные валентности, которые обусловливают появление акцепторных уровней и порождают р- тип проводимости.

Халькогениды свинца интересны тем, что используются в виде тонких пленок в качестве фотосопротивлений, очень чувствительных к инфракрасным лучам. Все три халькогенида имеют структуру типа NaCl и являются двусторонними фазами вычи­тания переменного состава. Бребрик и Сканлон изменяли состав кристаллов сульфида свинца, нагревая их20 ч до500 0 С при разном давлении паров серы, затем быстро охлаждали их до комнатной температуры. На рис. 79 приведены ре­зультаты исследования удельного сопротивления полученных образцов,

измеренного при комнатной температуре. Максимум сопро-

тивления получившегося образца отвечает давлению паров серы примерно 0,01 мм рт. ст. (это давление насыщенных паров серы при температу­ре около103° С ). В этих условиях совершается термодинамическое пре­вращениеn- типа сульфида вр- тип и обратно и полу­чается образец с миниму­мом проводимости, отвеча­ющий стехиометрическому составуPbS . Если упру­гость паров серы меньше, то во время термической обработки сульфида при500° С образец приобретает все большую и большуюn- проводимость, обуслов­ленную увеличивающейся концентрацией вакансий в подрешетке серы. При уве­личивающейся упругости паров серы во время тер­мической обработки суль­фида образец приобретает все большую и большую проводимостьp - типа, обуслов­ленную увеличивающейся концентрацией вакансий в подрешетке свинца. Та­ким образом, по обе стороны от максимума сопротивление резко убы­вает, как видно на рис. 79.

Образование вакансий в подрешетке серы с удалением атомов серы из сульфида свинца можно записать в таком виде:

q+ [S] q-
q+ [S]+S 2

Здесь q+ иq- - некоторый заряд меньший единицы, имеющийся на атомах, соответствующий доле ионной составляющей химической связи; q- - вакансии в анионной подрешетке; формула паров серы условно записанаS 2 .

По правилу фаз С = К + 2 - Ф эта система имеет две степени свободы, так как в ней одна твердая фаза, одна газообразная и два компонента. Поэтому, чтобы получить полупроводник с определенны­ми свойствами, необходимо установить не только постоянную темпера­туру, но и определенное давление паров серы (или свинца), соответст­вующее заданной температуре.

Температура резервуара с серой, 0 C

Рис. 79. Зависимость сопротивления кри­сталлов сульфида свинца от давления па­ров серы в процессе его

термической обра­ботки

Этот вывод важен для технологов. Он заставил перейти от однотемпературных печей при синтезе полупроводниковых соединений к двухтемпературным. Например, при одной температуре должен нахо­диться обрабатываемый сульфид, а при другой - сера или свинец (рис. 80).

Рис. 80. Схема синтеза полупро­водников в двухзонной печи

в условиях бивариантного равнове­сия с управлением

давлением па­ра одного из компонентов

В откачанной и запаянной ампуле находится при повышенной температуре T 1 (например, порядка1200° К ) сульфид в кварцевой лодочке, а в другой лодочке - сера, допустим, при температуре ее плавленияТ 2 = 392° К , при которой будет все время поддерживаться давление паров серы3,2 ∙ 10 -2 мм рт. ст. ИзменяяТ 2 , можно варьиро­вать давление паров серы, а значит, состав и свойства образца сульфи­да.

Выделение атомов серы из кристаллов сульфида при малом давле­нии паров серы объясняется весьма просто. Сначала удаляются атомы, лежащие на поверхности, из открытых трещин. На их место изнутри диффундируют другие атомы, оставляя после себя вакансии, и т. д. - до состояния термодинамического равновесия. Так как атомы серы имеют в решетке заряд q - , то, испа­ряясь в виде молекулS 2 (илиS n ) они оставляют свой заряд вакан­сиям. Так возникают донорные уровни. Если давление паров серы настолько велико, что все анионные вакансии заполнены путем диффу­зии по ним атомов серы вглубь, то может начаться достройка кристал­ловPbS атомами серы на поверхности. К этим атомам серы начнут диффундировать на поверхность атомы свинца, образуя в объеме кристалла вакансии с положитель­ным зарядомq + . Эти заряды эквивалентны акцепторным уровням, поэтому сульфид приобретаетр- проводимость:

q+ [S] q- + S 2
q+ [S]

(1 + x ) [ Pb ] [ S ] q -

Подобным образом возникают вакансии в подрешетке серы при обра­ботке PbS в парах свинца с повышенным давлением. Переход от[ Pb ] [ S ] q - к[ Pb ] q + [ S ] осуществляется в очень узкой области гомогенности - от 0,9995 0,0005 [S] до [S] 0,9995 0,0005 ; в этом узком интервале изменений состава изменяются знак и концент­рация подвижных носителей заряда.

На этом и других примерах образования фаз вычитания (ZnO 1 - x , С u 2 - x О, CdS 1 - x , и т. д.) можно видеть огромное значение вакансий в ионно-ковалентного характера соединениях переменного состава для возникновения тех или иных электрофизических свойств полупровод­ника.

Электропроводность примесных полупроводников (точнее с преоб­ладающей концентрацией донорных или акцепторных уровней) скла­дывается из двух слагаемых: = 1 + 2 ,

где 1 = e и 2 = e

Здесь Δ Е - ширина запрещенной зоны собственно полупроводни­ка;Δ Е" - энергия активации донорного или акцепторного центра (примеси).

Первое слагаемое выражает собственную проводимость, а второе - примесную проводимость полупроводника. При низкой температуре преобладает второй член, так как Δ Е" <Δ Е . С повышением темпера­туры начинает больше проявляться собственная проводимость, а при­месная теряет значение. Чем большеΔ Е , тем выше должна быть тем­пература, при которой в примесном полупроводнике станет преобла­дать собственная проводимость. Так, в примесном кремнии собствен­ная проводимость проявляется при более высокой температуре, чем в примесном германии, потому чтоΔ E Si =1,12 эв , аΔ E Ge =0,72 эв при комнатной температуре. Поэтому рабочая температура германие­вых приборов не превышает60 - 80° С , а кремниевые приборы могут работать до200° С . Надо иметь в виду, что возникновение собственной проводимости, достигающей известной доли примесной, в примесном полупроводнике нарушает режим работы приборов.

Иногда при условии активации практически всех донорных или акцептор­ных центров, когда собственная проводимость еще почти не имеет значения, на кривой = f (T) может

появиться область понижения проводимости за счет преобладающего влияния падающей подвижности носителей заряда. При даль­нейшем повышении Т и усилении генерации подвижных носителей заряда соб­ственно полупроводника опять повышается проводимость.

Расположение примесных уровней в запретной зоне зависит от положения элемента в периодической системе. Напри­мер, в твердых растворах замещения элементы III А подгруппы являются одиночными акцепторами, а элементыV A подгруппы одиночными донорами. Литий может только внедряться в кристаллические решетки германия и кремния и создавать донорные уровни. Энергия активации примесных атомовIII А иV A подгрупп в германии значительно мень­ше, чем в кремнии. Это в известной мере объясняется большей ди­электрической проницаемостью германия(15,9) , чем кремния(11,9) . Интересно, что энергия активации акцепторовIII группы увели­чивается от бора к индию. Это объясняется нарастанием металличес­ких свойств элементов отВ кIn , вследствие чего способность к захва­ту электронов падает. Отсюда растет энергия активации акцептора.

Следует отметить, что полупроводники, в которые введена какая-либо примесь при определенной температуре, могут оказаться в неравновесном состоянии при рабочей температуре прибора. Это сос­тояние может сохраняться (иногда долго при низкой температуре - ложное равновесие) или медленно изменяться, потому что процессы в твердых телах требуют значительной энергии активации. Однако под влиянием локального нагрева в том или другом полупроводниковом устройстве под влиянием облучения или под действием каталитическо­го центра может начаться более быстрое изменение (диффузионное перераспределение вещества, выкристаллизация избытка примеси и т. п.). В результате теряется надежность устройства, так как изменя­ются его параметры. Все сказанное выдвигает определенные требова­ния, касающиеся условий и методов приготовления полупроводников, пригодных для обеспечения надежной работы приборов.

p - n -переходы. Получение сплавного диода и триода. p-n- переходом называют переходный слой между электронной и дырочной областью в монокристалле полупроводника. Представим, что монокристалл германия разделен некоторой плоскостьюOR (рис. 24), по одну сторону которой, положим слева, находится одно­родная областьn- типа, а по другую сторону -р- типа проводимости. Это значит, что слева от плоскости преобладают донорные примеси, а справа - акцепторные. Допустим, концентрация акцепторовN а в областир и концентрация доноровN Д в областиn одинаковы и равны10 16 см -3 . Это может быть при некоторой температуре ниже300 0 К , при которойn р = n 2 i = 10 26 . Будем считать, что все примеси полностью активированы иn = N Д , ар = N a . Тогда в областиn концентрация равновесных дырокр n равна10 26 / 10 16 = 10 10 c м -3 . Такая же концент­рация электроновn р в правой (дырочной) области.

Н
а рис. 81 изображено постепенное изменение концентрации элект­ронов и дырок в области перехода от электронной к дырочной части полупроводника (между плоскостямиММ иМ 1 M 1 ).

Рис. 81. Схема распределения при­месей, дырок и электронов в полу­проводнике с резким изменением типа проводимости

Такое равновесное распределение создается в силу присущей свободным электронам и дыркам способности диффундировать из мест с большей концентраци­ей в места с меньшей концентрацией, что требуется законами термо­динамики. Перемещение основных носителей через переход обусловливает так называемый диффузионный ток. Благодаря этому в некотором слое области р появится отрицательный заряд, а в областиn - поло­жительный. Электроны, попадая изn - области вр- область, оставляют положительные ионы доноров вn - области и частично нейтрализуют дырки вр- области. Дырки, попадая изр- области вn - область, оставля­ют отрицательные ионы акцепторов вр- области и частично нейтрали­зуют электроны вn - области. Отрицательные ионы акцепторов и поло­жительные ионы доноров являютсянеподвижными носите­лями зарядов.

Таким образом, по обе стороны плоскости OR появляется двойной слой зарядов, противоположных по знаку. По одну сторону - вn - области - он обеднен электро­нами проводимо-

сти, а по дру­гую - в р- области - обеднен дырками, т. е. основными подви­жными носителями заряда. Со­здающееся поле противодейст­вует диффузии дырок вn - об­ласть и диффузии электронов вр- область, вследствие чего и ус­танавливается равновесное рас­пределение электронов и дырок, как изображено на рис. 81.

Область повышенного сопро­тивления р - n - перехода (между плоскостямиММ иМ"М" ) на­зывается запорным слоем, пото­му что через него в прямом на­правлении (пропускном) справа налево электрический ток проходит легко, а в обратном направлении (запорном) - слабо. В ре­зультате запорный слой обладает выпрямляющим действием. В зависимости от рода полупроводника ир - n - перехода ширина за­порного слоя бывает от долей микрометра до нескольких микрометров.

Для выпрямления переменного тока служит полупроводниковый диод, представляющий собой полупроводниковый кристалл, разделен­ный на две части р - n- переходом, с укрепленными на электронной и дырочной частях металлическими невыпрямляющими контактами.

Рассмотрим, как будет вести себя запирающий слой во внешнем переменном поле. Когда внешнее поле направлено от электронного полупроводника к дырочному, то оно усиливает существующее кон­тактное поле. Основные подвижные носители заряда разойдутся в про­тивоположные стороны от р - n - перехода. Из-за этого увеличится шири­на запорного слоя, а, следовательно, возрастет его сопротивление. Когда знак приложенной разности потенциалов изменится на обратный, то внешнее поле ослабит контактное поле и может даже его пере­крыть, вследствие чего ширина запорного слоя станет меньше равновес­ной и сопротивление его уменьшится. В пропускном направлении тока дырки изр- области и электроны изn- области движутся навстречу друг другу к плоскостиOR , в запорном - они расходятся от плоскостиOR . Таким образом, в переменном поле толщина запорного слоя то увеличивается, то уменьшается, что обеспечивает преимущественно одностороннюю проводимость выпрямляющей системы.

Зависимость силы тока от величины и направления приложенного напряжения к р - n - переходу характеризуется вольт- амперной кривой, изображенной на рис. 82.

Рис. 82. Вольт - амперная ха­рактеристика р - n - перехода

Правая ее ветвь характеризует прямое нап­равление тока, а левая - обратное. Чем слабее обратный ток, тем луч­ше выпрямляющее действие диода.

Для получения р - n - переходов обычно пользуются сплавлением и диффузией. При получениир - n - перехода для германиевого диода методом сплавления монокри­сталлn - типа разрезают на квадратные пластины со сторонами1,5 - 2 мм и тол­щиной порядка200 мкм . Загрязненный поверхностный слой удаляют протрав­ливанием в кипящем пергидроле (30 % Н 2 O 2 ) с небольшим количеством щелочи или в более сильном травителеСР - 4 (15 см 3 48 % - ной плавиковой кислоты,25 см 3 70 % - ной азотной кислоты,15 см 3 ледяной уксусной кислоты и0,3 см 3 брома). При травлении германий оки­сляется и переходит в раствор до тех пор, пока толщина пластинок станет 75- 100 мкм . В качестве акцепторной примеси для германия берут ин­дий в виде шариков или дисков диаметром ~1 мм .

Их тоже подвер­гают травлению.

Промытые деионизированной водой и высушенные индиевые дис­ки и германиевые пластинки закладывают в графитовые кассеты; индиевые диски в них прилегают к пластинкам с одной стороны (или с двух - для получения р - n - р - переходов при изготовлении триода). Кассету помещают в вакуумную или водородную печь и нагревают до~500° С . Так как индий плавится при156° С , то, будучи расплавлен­ным, он смачивает поверхность германия, растворяет его, и в пластин­ке появляется углубление, заполненное расплавленным раствором гер­мания в индии (рис. 83).

Если пластины правильно нарезались по плос­костям {111} , то фронт проплавления плоский, что очень важно, и глубина проплавления при достаточном времени зависит от количества индия и температуры сплавления в соответствии с диаграммой, изо­браженной на рис. 61,б . При остывании расплава германий начинает кристаллизоваться и захватывать не-

большое число атомов индия, cкоторым он образует твердый раствор замещения. Рекристаллизационная область будет дырочной (рис.83,г ).

Рис. 83. Схематичное изображение процесса получения

сплавного р - n переходаа - до плавления индия;б - расплавление индия и смачивание поверхности германия;в - растворение германия в индии;г - рекристаллизация

Таким образом, на основе пластинки n- германия вырастает пленка дырочного германия. К концу рекристаллизации закристаллизовывается чистый индий, и застывшая капля индия играет роль невыпрямляющего контакта с дырочным слоем полупроводника. Материалом для получения второго (невыпрямляющего) контакта сn - германием служит олово или золото с небольшим количеством донорной примеси. Можно поверхность пластиныn- германия залудить и потом к ней припаять внешний вывод. Однако проблема получения невыпрямляющих контактов весьма сложная.

Затем диод протравливают и промывают деионизованной водой. Его покрывают слоем вещества (лаки, кремнийорганические соединения и т. п.), защищающего от вредного влияния атмосферных газов и па­ров воды. Так изготовляют плоскостные диоды и триоды.

В методе термической диффузии на поверхность полупроводнико­вой пластины наносят тонкий слой соответствующего элемента, атомы которого в условиях нагрева в вакуумной печи диффундируют в толщу полупроводника и создают нужный тип проводимости. Используют также метод газовой диффузии в твердый полупроводник. В связи с развитием микроминиатюризации радиоаппаратуры и, в частности, для создания твердых схем диффузия находит себе применение в соче­тании с напылением проводящих пленок на том же кристалле.

В последнее время применяются так называемые эпитаксиальные пленки. Их получают наращиванием полупроводника на основной кристалл. Пленки должны точно повторять кристаллическую струк­туру подложки, но могут отличаться типом проводимости, вследствие чего можно создать р - n- переходы с заданной концентрацией носите­лей зарядов, получить низкоомные слои на высокоомных полупровод­никах и наоборот. Широко используются в промышленности методы наращивания эпитаксиальных пленок кремния и германия в случае восстановления тетрахлоридов очень чистым водородом при повышен­ной температуре:

SiCl 4 + 2Н 2
4НС1 + Si

GeCl 4 + 2Н 2
4НС1 + Ge

Атомы кремния и германия выделяются из тетрахлоридов под дей­ствием водорода в потоке газов (газотранспортные реакции) и обычно осаждаются эпитаксиально на горячих подложках. Легирующие при­меси вводят, добавляя летучие вещества в тетрахлорид или в систему газообразных веществ в виде отдельного потока, регулируемого иголь­чатыми вентилями. Этим методом выращивают многослойные монокрис­таллические пленки с контролируемым содержанием и распределением примесей в слоях. Метод требует очень высокой чистоты и точности обработки поверхности полупроводника, являющегося подложкой. Для изготовления так называемых поверхностно-барьерных триодов осаждают электролизом, например, индий на германий и т.д.

Самым известным полупроводником является кремний (Si). Но, кроме него, есть много других. Примером могут служить такие природные полупроводниковые материалы, как цинковая обманка (ZnS), куприт (Cu 2 O), галенит (PbS) и многие другие. Семейство полупроводников, включая полупроводники, синтезированные в лабораториях, представляет собой один из наиболее разносторонних классов материалов, известных человеку.

Характеристика полупроводников

Из 104 элементов таблицы Менделеева 79 являются металлами, 25 - неметаллами, из которых 13 обладают полупроводниковыми свойствами и 12 - диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.

Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.

Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие полиацетилен (СН) n, - полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd 1-x Mn x Te) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO 3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La 2 CuO 4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La 1-x Sr x) 2 CuO 4 .

Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10 -4 до 10 7 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника - от 0 до 3 эВ. Металлы и полуметаллы - это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs - 1,5 эВ. GaN, материал для в синей области, имеет запрещённую зону шириной 3,5 эВ.

Энергетический зазор

Валентные орбитали атомов в кристаллической решётке разделены на две группы энергетических уровней - свободную зону, расположенную на высшем уровне и определяющую электропроводность полупроводников, и валентную зону, расположенную ниже. Эти уровни, в зависимости от симметрии решётки кристалла и состава атомов, могут пересекаться или располагаться на расстоянии друг от друга. В последнем случае между зонами возникает энергетический разрыв или, другими словами, запрещённая зона.

Расположение и заполнение уровней определяет электропроводные свойства вещества. По этому признаку вещества делят на проводники, изоляторы и полупроводники. Ширина запрещённой зоны полупроводника варьируется в пределах 0,01-3 эВ, энергетический зазор диэлектрика превышает 3 эВ. Металлы из-за перекрытия уровней энергетических разрывов не имеют.

Полупроводники и диэлектрики, в противовес металлам, имеют заполненную электронами валентную зону, а ближайшая свободная зона, или зона проводимости, отгорожена от валентной энергетическим разрывом - участком запрещённых энергий электронов.

В диэлектриках тепловой энергии либо незначительного электрического поля недостаточно для совершения скачка через этот промежуток, электроны в зону проводимости не попадают. Они не способны передвигаться по кристаллической решётке и становиться переносчиками электрического тока.

Чтобы возбудить электропроводимость, электрону на валентном уровне нужно придать энергию, которой бы хватило для преодоления энергетического разрыва. Лишь при поглощении количества энергии, не меньшего, чем величина энергетического зазора, электрон перейдёт из валентного уровня на уровень проводимости.

В том случае, если ширина энергетического разрыва превышает 4 эВ, возбуждение проводимости полупроводника облучением либо нагреванием практически невозможно - энергия возбуждения электронов при температуре плавления оказывается недостаточной для прыжка через зону энергетического разрыва. При нагреве кристалл расплавится до возникновения электронной проводимости. К таким веществам относится кварц (dE = 5,2 эВ), алмаз (dE = 5,1 эВ), многие соли.

Примесная и собственная проводимость полупроводников

Чистые полупроводниковые кристаллы имеют собственную проводимость. Такие полупроводники именуются собственными. Собственный полупроводник содержит равное число дырок и свободных электронов. При нагреве собственная проводимость полупроводников возрастает. При постоянной температуре возникает состояние динамического равновесия количества образующихся электронно-дырочных пар и количества рекомбинирующих электронов и дырок, которые остаются постоянными при данных условиях.

Наличие примесей оказывает значительное влияние на электропроводность полупроводников. Добавление их позволяет намного увеличить количество свободных электронов при небольшом числе дырок и увеличить количество дырок при небольшом числе электронов на уровне проводимости. Примесные полупроводники - это проводники, обладающие примесной проводимостью.

Примеси, которые с лёгкостью отдают электроны, называются донорными. Донорными примесями могут быть химические элементы с атомами, валентные уровни которых содержат большее количество электронов, чем атомы базового вещества. Например, фосфор и висмут - это донорные примеси кремния.

Энергия, необходимая для прыжка электрона в область проводимости, носит название энергии активизации. Примесным полупроводникам необходимо намного меньше ее, чем основному веществу. При небольшом нагреве либо освещении освобождаются преимущественно электроны атомов примесных полупроводников. Место покинувшего атом электрона занимает дырка. Но рекомбинации электронов в дырки практически не происходит. Дырочная проводимость донора незначительна. Это происходит потому, что малое количество атомов примеси не позволяет свободным электронам часто приближаться к дырке и занимать её. Электроны находятся около дырок, но не способны их заполнить по причине недостаточного энергетического уровня.

Незначительная добавка донорной примеси на несколько порядков увеличивает число электронов проводимости по сравнению с количеством свободных электронов в собственном полупроводнике. Электроны здесь - основные переносчики зарядов атомов примесных полупроводников. Эти вещества относят к полупроводникам n-типа.

Примеси, которые связывают электроны полупроводника, увеличивая в нём количество дырок, называют акцепторными. Акцепторными примесями служат химические элементы с меньшим числом электронов на валентном уровне, чем у базового полупроводника. Бор, галлий, индий - акцепторные примеси для кремния.

Характеристики полупроводника находятся в зависимости от дефектов его кристаллической структуры. Это является причиной необходимости выращивания предельно чистых кристаллов. Параметрами проводимости полупроводника управляют путем добавления легирующих присадок. Кристаллы кремния легируют фосфором (элемент V подгруппы), который является донором, чтобы создать кристалл кремния n-типа. Для получения кристалла с дырочной проводимостью в кремний вводят акцептор бор. Полупроводники с компенсированным уровнем Ферми для перемещения его в середину запрещённой зоны создают подобным образом.

Одноэлементные полупроводники

Самым распространённым полупроводником является, конечно, кремний. Вместе с германием он стал прототипом широкого класса полупроводников, обладающих подобными структурами кристалла.

Si и Ge та же, что у алмаза и α-олова. В ней каждый атом окружают 4 ближайших атома, которые образуют тетраэдр. Такая координация называется четырехкратной. Кристаллы с тетрадрической связью стали базовыми для электронной промышленности и играют ключевую роль в современной технологии. Некоторые элементы V и VI группы таблицы Менделеева также являются полупроводниками. Примеры полупроводников этого типа - фосфор (Р), сера (S), селен (Se) и теллур (Те). В этих полупроводниках атомы могут иметь трехкратную (Р), двухкратную (S, Se, Те) или четырехкратную координацию. В результате подобные элементы могут существовать в нескольких различных кристаллических структурах, а также быть получены в виде стекла. Например, Se выращивался в моноклинной и тригональной кристаллических структурах или в виде стекла (которое можно также считать полимером).

Алмаз обладает отличной термической проводимостью, превосходными механическими и оптическими характеристиками, высокой механической прочностью. Ширина энергетического разрыва - dE = 5,47 эВ.

Кремний - полупроводник, используемый в солнечных батареях, а в аморфной форме - в тонкоплёночных солнечных батареях. Является наиболее используемым полупроводником в фотоэлементах, прост в производстве, обладает хорошими электрическими и механическими качествами. dE = 1,12 эВ.

Германий - полупроводник, используемый в гамма-спектроскопии, высокоэффективных фотоэлементах. Использовался в первых диодах и транзисторах. Требует меньше очистки, чем кремний. dE = 0,67 эВ.

Селен - полупроводник, который применяется в селеновых выпрямителях, обладающих высокой радиационной устойчивостью и способностью к самовосстановлению.

Двухэлементные соединения

Свойства полупроводников, образуемых элементами 3 и 4 групп таблицы Менделеева, напоминают 4 группы. Переход от 4 группы элементов к соединениям 3-4 гр. делает связи частично ионными по причине переноса заряда электронов от атома 3 группы к атому 4 группы. Ионность меняет свойства полупроводников. Она является причиной увеличения кулоновского межионного взаимодействия и энергии энергетического разрыва зонной структуры электронов. Пример бинарного соединения этого типа - антимонид индия InSb, арсенид галлия GaAs, антимонид галлия GaSb, фосфид индия InP, антимонид алюминия AlSb, фосфид галлия GaP.

Ионность возрастает, а значение её еще больше растёт в соединениях веществ 2—6 групп, таких как селенид кадмия, сульфид цинка, сульфид кадмия, теллурид кадмия, селенид цинка. В итоге у большинства соединений 2—6 групп запрещённая зона шире 1 эВ, кроме соединений ртути. Теллурид ртути - полупроводник без энергетического зазора, полуметалл, подобно α-олову.

Полупроводники 2-6 групп с большим энергетическим зазором находят применение в производстве лазеров и дисплеев. Бинарные соединения 2- 6 групп со суженным энергетическим разрывом подходят для инфракрасных приемников. Бинарные соединения элементов 1-7 групп (бромид меди CuBr, иодид серебра AgI, хлорид меди CuCl) по причине высокой ионности обладают запрещённой зоной шире З эВ. Они фактически не полупроводники, а изоляторы. Рост энергии сцепления кристалла по причине кулоновского межионного взаимодействия способствует структурированию атомов с шестикратной, а не квадратичной координацией. Соединения 4-6 групп - сульфид и теллурид свинца, сульфид олова - также полупроводники. Степень ионности данных веществ тоже содействует образованию шестикратной координации. Значительная ионность не препятствует наличию у них очень узких запрещённых зон, что позволяет использовать их для приёма ИК-излучения. Нитрид галлия - соединение 3-5 групп с широким энергетическим зазором, нашёл применение в и светодиодах, работающих в голубой части спектра.

GaAs, арсенид галлия - второй по востребованности после кремния полупроводник, обычно используемый в качестве подложки для других проводников, например, GaInNAs и InGaAs, в ИК-сетодиодах, высокочастотных микросхемах и транзисторах, высокоэффективных фотоэлементах, лазерных диодах, детекторах ядерного излечения. dE = 1,43 эВ, что позволяет повысить мощность приборов по сравнению с кремнием. Хрупок, содержит больше примесей, сложен в изготовлении.

ZnS, сульфид цинка - цинковая соль сероводородной кислоты с диапазоном запрещённой зоны 3,54 и 3,91 эВ, используется в лазерах и в качестве люминофора.

SnS, сульфид олова - полупроводник, используемый в фоторезисторах и фотодиодах, dE= 1,3 и 10 эВ.

Оксиды

Оксиды металлов преимущественно являются прекрасными изоляторами, но есть и исключения. Примеры полупроводников этого типа - оксид никеля, оксид меди, оксид кобальта, двуокись меди, оксид железа, оксид европия, оксид цинка. Так как двуокись меди существует в виде минерала куприта, её свойства усиленно исследовались. Процедура выращивания полупроводников этого типа еще не совсем понятна, поэтому их применение пока ограничено. Исключение составляет оксид цинка (ZnO), соединение 2—6 групп, применяемый в качестве преобразователя и в производстве клеящих лент и пластырей.

Положение кардинально изменилось после того, как во многих соединениях меди с кислородом была открыта сверхпроводимость. Первым высокотемпературным сверхпроводником, открытым Мюллером и Беднорцем, стало соединение, основанное на полупроводнике La 2 CuO 4 с энергетическим зазором 2 эВ. Замещая трёхвалентный лантан двухвалентным барием или стронцием, в полупроводник вводятся переносчики заряда дырки. Достижение необходимой концентрации дырок превращает La 2 CuO 4 в сверхпроводник. В данное время наибольшая температура перехода в сверхпроводящее состояние принадлежит соединению HgBaCa 2 Cu 3 O 8 . При высоком давлении её значение составляет 134 К.

ZnO, оксид цинка, используется в варисторах, голубых светодиодах, датчиках газа, биологических сенсорах, покрытиях окон для отражения инфракрасного света, как проводник в ЖК-дисплеях и солнечных батареях. dE=3.37 эВ.

Слоистые кристаллы

Двойные соединения, подобные дииодиду свинца, селениду галлия и дисульфиду молибдена, отличаются слоистым строением кристалла. В слоях действуют значительной силы, намного сильнее ван-дер-ваальсовских связей между самими слоями. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоёв изменяется введением сторонних атомов - интеркаляцией.

MoS 2, дисульфид молибдена применяется в высокочастотных детекторах, выпрямителях, мемристорах, транзисторах. dE=1,23 и 1,8 эВ.

Органические полупроводники

Примеры полупроводников на основе органических соединений - нафталин, полиацетилен (CH 2) n , антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. Органические полупроводники обладают преимуществом перед неорганическими: им легко придавать нужные качества. Вещества с сопряжёнными связями вида -С=С-С=, обладают значительной оптической нелинейностью и, благодаря этому, применяются в оптоэлектронике. Кроме того, зоны энергетического разрыва органических полупроводников изменяются изменением формулы соединения, что намного легче, чем у обычных полупроводников. Кристаллические аллотропы углерода фуллерен, графен, нанотрубки - тоже полупроводниками.

Фуллерен имеет структуру в виде выпуклого замкнутого многогранника из чётного количества атомов углеорода. А легирование фуллерена С 60 щелочным металлом превращает его в сверхпроводник.

Графен образован одноатомным слоем углерода, соединённого в двумерную гексагональную решётку. Обладает рекордной теплопроводностью и подвижностью электронов, высокой жёсткостью

Нанотрубки представляют собой свернутые в трубку пластины графита, имеющие несколько нанометров в диаметре. Эти формы углерода имеют большую перспективу в наноэлектронике. В зависимости от сцепления могут проявлять металлические или полупроводниковые качества.

Магнитные полупроводники

Соединения с магнитными ионами европия и марганца обладают любопытными магнитными и полупроводниковыми свойствами. Примеры полупроводников этого типа - сульфид европия, селенид европия и твёрдые растворы, подобные Cd 1-x- Mn x Te. Содержание магнитных ионов влияет на то, как в веществах проявляются такие магнитные свойства, как антиферромагнетизм и ферромагнетизм. Полумагнитные полупроводники - это твёрдые магнитные растворы полупроводников, которые содержат магнитные ионы в небольшой концентрации. Такие твёрдые растворы обращают на себя внимание своей перспективностью и большим потенциалом возможных применений. Например, в отличие от немагнитных полупроводников, в них можно достигнуть в миллион раз большего фарадеевского вращения.

Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Перовскиты, подобные Mn 0,7 Ca 0,3 O 3, своими свойствами превосходят переход металл-полупроводник, прямая зависимость которого от магнитного поля имеет следствием явление гигантской магнето-резистивности. Применяются в радиотехнических, оптических приборах, которые управляются магнитным полем, в волноводах СВЧ-устройств.

Полупроводниковые сегнетоэлектрики

Этот тип кристаллов отличается наличием в них электрических моментов и возникновением спонтанной поляризации. Например, такими свойствами обладают полупроводники титанат свинца PbTiO 3 , титанат бария BaTiO 3 , теллурид германия GeTe, теллурид олова SnTe, которые при низких температурах имеют свойства сегнетоэлектрика. Эти материалы применяются в нелинейно-оптических, запоминающих устройствах и пьезодатчиках.

Разнообразие полупроводниковых материалов

Помимо упомянутых выше полупроводниковых веществ, есть много других, которые не попадают ни под один из перечисленных типов. Соединения элементов по формуле 1-3-5 2 (AgGaS 2) и 2-4-5 2 (ZnSiP 2) образуют кристаллы в структуре халькопирита. Связи соединений тетраэдрические, аналогично полупроводникам 3-5 и 2-6 групп с кристаллической структурой цинковой обманки. Соединения, которые образуют элементы полупроводников 5 и 6 групп (подобно As 2 Se 3), - полупроводниковые в форме кристалла или стекла. Халькогениды висмута и сурьмы используются в полупроводниковых термоэлектрических генераторах. Свойства полупроводников этого типа чрезвычайно интересны, но они не обрели популярность по причине ограниченного применения. Однако то, что они существуют, подтверждает наличие ещё до конца не исследованных областей физики полупроводников.

Электротехнические материалы: полупроводники, диэлектрики, проводники, сверхпроводники.

По электрическим свойствам материалы делятся на диэлектрики, полупроводники, проводники и сверхпроводники. Они отличаются друг от друга электрической проводимостью и её механизмом, характером зависимости электрического сопротивления от температуры.

Диэлектрики . Это вещества, которые не обладают хорошей электронной проводимостью и поэтому являются изоляторами. Диэлектрики имеют удельное электрическое сопротивление в интервале от 10 8 до 10 16 Ом∙м. Некоторые из них также как и металлы имеют кристаллическую структуру. Вид химической связи в диэлектриках, в основном, ионный или ковалентный. Свободные носители заряда отсутствуют. Между валентной зоной и зоной проводимости находится широкая запрещенная зона. К диэлектрикам относятся полимерные материалы: соли, оксиды, полиэтилен, резина, текстильные материалы.

Диэлектрики, такие как керамика, стекло, пластмассы обладают высокой диэлектрической проницаемостью, значения которой находятся в пределах от 2 до 20. Но отдельные диэлектрики имеют значения относительной диэлектрической проницаемости около тысячи и выше. Такие диэлектрики называются сегнетоэлектриками.

Рис. 1. Схема расположения энергетических зон в металле (а), полупроводнике (б),

изоляторе (в).

Полупроводники. Полупроводники занимают промежуточное положение между изоляторами и проводниками, они отличаются как от металлов, так и от изоляторов. При низких температурах электрическое сопротивление полупроводников велико и они в этом отношении похожи на диэлектрики, хотя зависимость удельного электрического сопротивления от температуры у них отличается от таковой для изоляторов. При нагревании электрическая проводимость полупроводников растет, достигая величин, характерных для металлов.

Полупроводники имеют удельное электрическое сопротивление от 10 -5 до 10 8 Ом∙м. К полупроводникам относятся B, C, Si, Ge, Sn, P, As, Sb, S, Se, Te, I. Полупроводниками являются такие бинарные соединения ZnO, FeO, ZnS, CdS, GaAs, ZnSb, SiC, а также более сложные соединения.

Ширина запрещенной зоны в полупроводниках изменяется от 0,08 эВ (у металла Sn) до 5,31 эВ (неметалла алмаз). Зависимость электрических свойств полупроводников от температуры и освещенности объясняется электронным строением их кристаллов. У них, как и у изоляторов, валентная зона отделена от зоны проводимости запрещенной зоной (рис. 1). Однако ширина запрещенной зоны в случае полупроводников существенно меньше, чем у диэлектриков. Благодаря этому при действии облучения или при нагревании, электроны, занимающие верхние уровни валентной зоны, могут переходить в зону проводимости и участвовать в переносе электрического тока. С повышением температуры и увеличением освещенности число электронов, переходящих в зону проводимости, возрастает, что приводит к росту электрической проводимости полупроводника.

В полупроводниках с ковалентной связью появление электрона в зоне проводимости одновременно создает его вакансию в валентной зоне. Данные вакансии называются дырками. Они могут участвовать в движении под действием электрического поля. Поэтому электрический ток в полупроводниках определяется движением электронов в зоне проводимости и движением дырок в валентной зоне. В первом случае электроны переходят на незанятые молекулярные орбитали, во втором – на частично занятые молекулярные орбитали.

Из простых полупроводников наиболее распространены кремний и германий. Полупроводники применяются в радиоэлектронных приборах.

Проводники. Это вещества, которые проводят электрический ток. К проводникам относятся металлы. Удельное электрическое сопротивление проводников изменяется от 10 -8 до 10 -5 Ом∙м. С повышением температуры электрическое сопротивление увеличивается, этим они и отличаются от полупроводников. Носителями заряда в проводниках являются электроны. Валентная зона и зона проводимости электронной структуры металлов пересекаются (рис. 1 а). Это позволяет электронам из валентной зоны переходить при небольшом возбуждении на молекулярные орбитали зоны проводимости.

Проводники применяются для передачи электрической энергии на большие расстояния, в качестве резисторов, нагревательных элементов, осветительных приборов.

Сверхпроводники. Материалы, у которых электрическое сопротивление при некоторой критической температуре резко уменьшается до нуля, называются сверхпроводниками. У обычных веществ падение электрического сопротивления практически до нуля возможно только при низких температурах. Например, у ртути она составляет 4,2 К. Поэтому широкое практическое использование сверхпроводимости нецелесообразно, так как связано с большими энергетическими затратами на охлаждение до очень низких температур.

В 1988 году было открыто явление высокотемпературной сверхпроводимости. Найдены такие вещества, которые проявляют сверхпроводящие свойства при достаточно высоких температурах порядка 90 – 135 К. Такие температуры могут быть достигнуты в среде жидкого азота. Это открывает возможности практического использования явления сверхпроводимости.

Высокотемпературные свойства обнаружены у следующих веществ: Y-Ba-Cu-O (T c = 90 K), Bi - Ca – Cu – O (T c = 110 K), Hg – Ba – Ca – Cu – O (T c = 135 K).

В настоящее время ведутся поиски новых систем, которые могли бы находиться в сверхпроводящем состоянии при температурах кипения диоксида углерода, которая равна 194,7 К.



Последние материалы раздела:

Чем атом отличается от молекулы Сравнение атома и молекулы
Чем атом отличается от молекулы Сравнение атома и молекулы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Что такое молекула и чем она отличается от атома Что такое изотопы
Что такое молекула и чем она отличается от атома Что такое изотопы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы
Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы

Вся материя вокруг нас, которую мы видим, состоит из различных атомов. Атомы отличаются друг от друга строением, размером и массой. Существует...