Правительственных topic simple machines. Методическая разработка занятия по английскому языку на тему "Машины и работа" (3 курс)

The wheel and axle , the inclined plane , the wedge , the , and the screw . Several of these simple machines are related to each other. But, each has a specific purpose in the world of doing work.

There are special tools for measuring the force necessary to move an object. These are known as force meters. They use a spring and a hook to determine how much pull is required to slide an object up an inclined plane. Really very simple to use.

Compound Machines

Simple machines can be combined together to form compound machines. Many of our everyday tools and the objects we use are really compound machine . Scissors are a good example. The edge of the blades are wedges. But the blades are combined with a lever to make the two blades come together to cut.

A lawnmower combines wedges (the blades) with a wheel and axle that spins the blades in a circle. But there is even more. The engine probably works in combination of several simple machines and the handle that you use to push the lawnmower around the yard is a form of a lever. So even something complicated can be broken down into the simplest of machines.

Take a look around you — can you figure out what simple machines make up a can opener, the hand cranked pencil sharpener, the ice dispenser in the refrigerator or the stapler? Just be careful, though. In our modern times, many things rely on electronics and light waves to function and are not made of simple machines. But even then, you may be surprised. The turntable in your microwave oven is a wheel and axle. The lid to the laptop is connected to the pad by a hinge or lever.

Simple machines may be simple — but they are simply everywhere.

A Word or Two About Rube

Rube Goldberg was a famous cartoonist who lived between 1883 and 1970. His life was spent creating art and sculptures, but his most famous work was for his "inventions." These inventions were a series of simple machines put together in a complex fashion to accomplish something very simple, but it took many steps to get there. Contests have been run for many years since Mr. Goldberg first created his unique ideas. In the contests people try to come up with new ways to turn on a light, or start a toaster using these combinations of the simple machines to wow judges and audiences for their unique way of doing these simple tasks.

Rube Goldberg machines are fun to watch and to build. Visit this site for some fun — see if you can identify each of the simple machines as they work together in this animation of a Rube Goldberg gadget designed to get this guy out of bed in the morning. Click .

For more information about Rube Goldberg"s life and his art, click .

Написанного на Perl . Спустя некоторое время YaBB был переписан на PHP и стал называться YaBB SE .

По мере того как YaBB SE развивался, он становился все больше, и к тому времени появились некоторые аспекты, требующие переделки и усовершенствования проекта. Было принято решение, что лучше всего отделиться от YaBB SE , потому как это было нечто иное, чем YaBB. Самым правильным решением было отказаться от всего что наработано и начать все заново. С этого и началось развитие SMF .

29 сентября 2003 года была выпущена первая версия SMF 1.0 beta1 , которая распространялась только для группы Charter Member . Это было большим минусом, так как форум мог использовать только ограниченный круг людей, входивших в состав данной группы. 10 марта 2004 года вышел первый общедоступный релиз SMF . Веб-форумы на базе SMF 1.1 : ami.lv и не менее популярный iratbildes.lv .

SMF создавался как замена интернет-форуму YaBB SE , который приобрел плохую репутацию из-за проблем его аналога, разработанного на Perl с подобным названием - YaBB .

Первые версии YaBB были известны проблемой производительности и были требовательны к ресурсам. YaBB SE был написан как примерный PHP -порт YaBB , но при этом он был менее требователен к ресурсам и даже лишён проблем с безопасностью.

SMF стартовал как небольшой проект одного из разработчиков YaBB SE , и с целью расширить возможности шаблонов YaBB SE . С тех пор проект постепенно расширялся: добавлялась общая функциональность «заказанная» пользователями, решались проблемы производительности и вопросы безопасности.

Версия 2.0 форума объявлена 8 апреля 2007. Публичный бета-релиз был выпущен 17 марта 2008. К основным нововведениям относятся :

  • Абстракция базы данных: планируется поддержка PostgreSQL и SQLite .
  • Центр модерации, объединяющий все функции модерации для всех модераторов, а также позволяющий осуществлять премодерацию тем, сообщений и вложений, если это будет необходимо.
  • Система предупреждений пользователей
  • Дополнительное управление группами пользователей такими как модераторы, а также свободные группы и группы по запросу.
  • Поддержка OpenID . Возможность использовать OpenID -аккаунт для регистрации и входа на форум.
  • Дополнительные поля в профилях пользователей.
  • WYSIWYG -редактор для обеспечения интуитивно понятного интерфейса пользователя.
  • Диспетчер задач и система очереди сообщений

Исходный код проекта доступен в публичном репозитории на GitHub github.com/SimpleMachines/SMF2.1

Лицензия

SMF 1.0 и 1.1 публикуются под проприетарной лицензией. В то время как с открытым исходным кодом, перераспределение и / или распространение модифицированных компонентов ограничено уполномоченным органам.

Simple Machines Forum версии 2.0 и 2.1 под лицензией BSD 3-п . Это также открытый исходный код с перераспределением модифицированного кода в зависимости от требований к BSD.

Локализация

Команда SMF

Над SMF работают более 50 человек , в том числе:

  • 3 менеджера
  • 6 разработчиков
  • 3 документатора

Девиз команды: «Малочисленные, гордые, увлечённые!» (The few, the proud, the geeky! (англ.) )

См. также

Напишите отзыв о статье "Simple Machines Forum"

Примечания

Литература

  • Phil Hughes (англ.) // Linux Journal . - 2008. - 4 марта.

Ссылки

  • - официальный сайт Simple Machines Forum (англ.)
  • (рус.)
  • (рус.)

Отрывок, характеризующий Simple Machines Forum

По опекунским делам рязанского именья, князю Андрею надо было видеться с уездным предводителем. Предводителем был граф Илья Андреич Ростов, и князь Андрей в середине мая поехал к нему.
Был уже жаркий период весны. Лес уже весь оделся, была пыль и было так жарко, что проезжая мимо воды, хотелось купаться.
Князь Андрей, невеселый и озабоченный соображениями о том, что и что ему нужно о делах спросить у предводителя, подъезжал по аллее сада к отрадненскому дому Ростовых. Вправо из за деревьев он услыхал женский, веселый крик, и увидал бегущую на перерез его коляски толпу девушек. Впереди других ближе, подбегала к коляске черноволосая, очень тоненькая, странно тоненькая, черноглазая девушка в желтом ситцевом платье, повязанная белым носовым платком, из под которого выбивались пряди расчесавшихся волос. Девушка что то кричала, но узнав чужого, не взглянув на него, со смехом побежала назад.
Князю Андрею вдруг стало от чего то больно. День был так хорош, солнце так ярко, кругом всё так весело; а эта тоненькая и хорошенькая девушка не знала и не хотела знать про его существование и была довольна, и счастлива какой то своей отдельной, – верно глупой – но веселой и счастливой жизнию. «Чему она так рада? о чем она думает! Не об уставе военном, не об устройстве рязанских оброчных. О чем она думает? И чем она счастлива?» невольно с любопытством спрашивал себя князь Андрей.
Граф Илья Андреич в 1809 м году жил в Отрадном всё так же как и прежде, то есть принимая почти всю губернию, с охотами, театрами, обедами и музыкантами. Он, как всякому новому гостю, был рад князю Андрею, и почти насильно оставил его ночевать.
В продолжение скучного дня, во время которого князя Андрея занимали старшие хозяева и почетнейшие из гостей, которыми по случаю приближающихся именин был полон дом старого графа, Болконский несколько раз взглядывая на Наташу чему то смеявшуюся и веселившуюся между другой молодой половиной общества, всё спрашивал себя: «о чем она думает? Чему она так рада!».
Вечером оставшись один на новом месте, он долго не мог заснуть. Он читал, потом потушил свечу и опять зажег ее. В комнате с закрытыми изнутри ставнями было жарко. Он досадовал на этого глупого старика (так он называл Ростова), который задержал его, уверяя, что нужные бумаги в городе, не доставлены еще, досадовал на себя за то, что остался.
Князь Андрей встал и подошел к окну, чтобы отворить его. Как только он открыл ставни, лунный свет, как будто он настороже у окна давно ждал этого, ворвался в комнату. Он отворил окно. Ночь была свежая и неподвижно светлая. Перед самым окном был ряд подстриженных дерев, черных с одной и серебристо освещенных с другой стороны. Под деревами была какая то сочная, мокрая, кудрявая растительность с серебристыми кое где листьями и стеблями. Далее за черными деревами была какая то блестящая росой крыша, правее большое кудрявое дерево, с ярко белым стволом и сучьями, и выше его почти полная луна на светлом, почти беззвездном, весеннем небе. Князь Андрей облокотился на окно и глаза его остановились на этом небе.
Комната князя Андрея была в среднем этаже; в комнатах над ним тоже жили и не спали. Он услыхал сверху женский говор.
– Только еще один раз, – сказал сверху женский голос, который сейчас узнал князь Андрей.
– Да когда же ты спать будешь? – отвечал другой голос.
– Я не буду, я не могу спать, что ж мне делать! Ну, последний раз…
Два женские голоса запели какую то музыкальную фразу, составлявшую конец чего то.
– Ах какая прелесть! Ну теперь спать, и конец.
– Ты спи, а я не могу, – отвечал первый голос, приблизившийся к окну. Она видимо совсем высунулась в окно, потому что слышно было шуршанье ее платья и даже дыханье. Всё затихло и окаменело, как и луна и ее свет и тени. Князь Андрей тоже боялся пошевелиться, чтобы не выдать своего невольного присутствия.
– Соня! Соня! – послышался опять первый голос. – Ну как можно спать! Да ты посмотри, что за прелесть! Ах, какая прелесть! Да проснись же, Соня, – сказала она почти со слезами в голосе. – Ведь этакой прелестной ночи никогда, никогда не бывало.
Соня неохотно что то отвечала.
– Нет, ты посмотри, что за луна!… Ах, какая прелесть! Ты поди сюда. Душенька, голубушка, поди сюда. Ну, видишь? Так бы вот села на корточки, вот так, подхватила бы себя под коленки, – туже, как можно туже – натужиться надо. Вот так!
– Полно, ты упадешь.
Послышалась борьба и недовольный голос Сони: «Ведь второй час».
– Ах, ты только всё портишь мне. Ну, иди, иди.
Опять всё замолкло, но князь Андрей знал, что она всё еще сидит тут, он слышал иногда тихое шевеленье, иногда вздохи.
– Ах… Боже мой! Боже мой! что ж это такое! – вдруг вскрикнула она. – Спать так спать! – и захлопнула окно.
«И дела нет до моего существования!» подумал князь Андрей в то время, как он прислушивался к ее говору, почему то ожидая и боясь, что она скажет что нибудь про него. – «И опять она! И как нарочно!» думал он. В душе его вдруг поднялась такая неожиданная путаница молодых мыслей и надежд, противоречащих всей его жизни, что он, чувствуя себя не в силах уяснить себе свое состояние, тотчас же заснул.

На другой день простившись только с одним графом, не дождавшись выхода дам, князь Андрей поехал домой.
Уже было начало июня, когда князь Андрей, возвращаясь домой, въехал опять в ту березовую рощу, в которой этот старый, корявый дуб так странно и памятно поразил его. Бубенчики еще глуше звенели в лесу, чем полтора месяца тому назад; всё было полно, тенисто и густо; и молодые ели, рассыпанные по лесу, не нарушали общей красоты и, подделываясь под общий характер, нежно зеленели пушистыми молодыми побегами.
Целый день был жаркий, где то собиралась гроза, но только небольшая тучка брызнула на пыль дороги и на сочные листья. Левая сторона леса была темна, в тени; правая мокрая, глянцовитая блестела на солнце, чуть колыхаясь от ветра. Всё было в цвету; соловьи трещали и перекатывались то близко, то далеко.
«Да, здесь, в этом лесу был этот дуб, с которым мы были согласны», подумал князь Андрей. «Да где он», подумал опять князь Андрей, глядя на левую сторону дороги и сам того не зная, не узнавая его, любовался тем дубом, которого он искал. Старый дуб, весь преображенный, раскинувшись шатром сочной, темной зелени, млел, чуть колыхаясь в лучах вечернего солнца. Ни корявых пальцев, ни болячек, ни старого недоверия и горя, – ничего не было видно. Сквозь жесткую, столетнюю кору пробились без сучков сочные, молодые листья, так что верить нельзя было, что этот старик произвел их. «Да, это тот самый дуб», подумал князь Андрей, и на него вдруг нашло беспричинное, весеннее чувство радости и обновления. Все лучшие минуты его жизни вдруг в одно и то же время вспомнились ему. И Аустерлиц с высоким небом, и мертвое, укоризненное лицо жены, и Пьер на пароме, и девочка, взволнованная красотою ночи, и эта ночь, и луна, – и всё это вдруг вспомнилось ему.

Simple machines are devices with few or no moving parts that make work easier. Students are introduced to the six types of simple machines - the wedge, wheel and axle, lever, inclined plane, screw, and pulley - in the context of the construction of a pyramid, gaining high-level insights into tools that have been used since ancient times and are still in use today. In two hands-on activities, students begin their own pyramid design by performing materials calculations, and evaluating and selecting a construction site. The six simple machines are examined in more depth in subsequent lessons in this unit. This engineering curriculum meets Next Generation Science Standards (NGSS).

Engineering Connection

Why do engineers care about simple machines? How do such devices help engineers improve society? Simple machines are important and common in our world today in the form of everyday devices (crowbars, wheelbarrows, highway ramps, etc.) that individuals, and especially engineers, use on a daily basis. The same physical principles and mechanical advantages of simple machines used by ancient engineers to build pyramids are employed by today"s engineers to construct modern structures such as houses, bridges and skyscrapers. Simple machines give engineers added tools for solving everyday challenges.

Learning Objectives

After this lesson, students should be able to:

  • Understand what a simple machine is and how it would help an engineer to build something.
  • Identify six types of simple machines.
  • Understand how the same physical principles used by engineers today to build skyscrapers were employed in ancient times by engineers to build pyramids.
  • Generate and compare multiple possible solutions to creating a simple lever machine based on how well each met the constraints of the challenge.

More Curriculum Like This

Levers That Lift

Students are introduced to three of the six simple machines used by many engineers: lever, pulley, and wheel-and-axle. In general, engineers use the lever to magnify the force applied to an object, the pulley to lift heavy loads over a vertical path, and the wheel-and-axle to magnify the torque appl...

Slide Right on by Using an Inclined Plane

Students explore building a pyramid, learning about the simple machine called an inclined plane. They also learn about another simple machine, the screw, and how it is used as a lifting or fastening device.

Splash, Pop, Fizz: Rube Goldberg Machines

Refreshed with an understanding of the six simple machines; screw, wedge, pully, incline plane, wheel and axle, and lever, student groups receive materials and an allotted amount of time to act as mechanical engineers to design and create machines that can complete specified tasks.

Pyramid Building: How to Use a Wedge

Students learn how simple machines, including wedges, were used in building both ancient pyramids and present-day skyscrapers. In a hands-on activity, students test a variety of wedges on different materials (wax, soap, clay, foam).

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN) , a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g. , by state; within source by type; e.g. , science or mathematics; within type by subtype, then by grade, etc .

NGSS: Next Generation Science Standards - Science
International Technology and Engineering Educators Association - Technology

Introduction/Motivation

How did the Egyptians build the Great Pyramids thousands of years ago (~2,500 BCE)? Could you build a pyramid using 9,000-kilogram (~10-ton or 20,000-lb) blocks of stone with your bare hands? That"s like trying to move a large elephant with your bare hands! How many people might it take to move a block that big? It would still be a challenge to build a pyramid today even with modern tools, such as jackhammers, cranes, trucks and bulldozers. But without these modern tools, how did Egyptian workers cut, shape, transport and place enormous stones? Well, one key to accomplishing this amazing and difficult task was the use of simple machines.

Simple machines are devices with no, or very few, moving parts that make work easier. Many of today"s complex tools are really just more complicated forms of the six simple machines. By using simple machines, ordinary people can split huge rocks, hoist large stones, and move blocks over great distances.

However, it took more than just simple machines to build the pyramids. It also took tremendous planning and a great design . Planning, designing, working as a team and using tools to create something, or to get a job done, is what engineering is all about. Engineers use their knowledge, creativity and problem-solving skills to accomplish some amazing feats to solve real-world challenges. People call on engineers to use their understanding of how things work to do seemingly impossible jobs and make everyday activities easier. It is surprising how many times engineers turn to simple machines to solve these problems.

Once we understand simple machines, you will recognize them in many common activities and everyday items. (Hand out .) These are the six simple machines: wedge, wheel and axle, lever, inclined plane, screw , and pulley . Now that you see the pictures, do you recognize some of these simple machines? Can you see any of these simple machines around the classroom? How do they work? Well, an important vocabulary term when learning about simple machines is mechanical advantage . Mechanical advantage of simple machines means we can use less force to move an object, but we have to move it a longer distance. A good example is pushing a heavy object up a ramp. It may be easier to push the object up a ramp instead of just lifting it up to the right height, but it takes a longer distance. A ramp is an example of the simple machine called an inclined plane . We are going to learn a lot more about each of these six simple machines that are a simple solution to helping engineers, and all humans, do hard work.

Sometimes it is difficult to recognize simple machines in our lives because they look different than the examples we see at school. To make our study of simple machines easier, let"s imagine that we are living in ancient Egypt and that the leader of the country has hired us as engineers to build a pyramid. Today"s availability of electricity and technologically-advanced machines make it difficult for us to see what the simple machine is accomplishing. But in the context of ancient Egypt, the simple machines that we will study are the much more basic tools of the time. After we develop an understanding of simple machines, we will shift our context to building a skyscraper in the present day, so we can compare and contrast how simple machines were used across the centuries and are still used today.

Lesson Background and Concepts for Teachers

Use the attached Introduction to Simple Machines PowerPoint presentation and Simple Machines Reference Sheet as helpful classroom tools. (Show the PowerPoint presentation, or print out the slides to use with an overhead projector. The presentation is animated to promote an inquiry-based style; each click reveals a new point about each machine; have students suggest characteristics and examples before you reveal them.)

Simple machines are everywhere; we use them everyday to perform simple tasks. Simple machines have also been in use since the early days of human existence. While simple machines take many shapes, they come in six basic types:

  • Wedge : A device that forces things apart.
  • Wheel and axle : Used to reduce friction.
  • Lever : Moves around a pivot point to increase or decrease mechanical advantage.
  • Inclined plane : Raises objects by moving up a slope.
  • Screw : A device that can lift or hold things together.
  • Pulley : Changes the direction of a force.

We use simple machines because they make work easier. The scientific definition of work is the amount of force that is applied to an object multiplied by the distance the object is moved. Thus, work consists of force and distance. Each job takes a specific amount of work to finish it, and this number does not change. Thus, the force times the distance always equals the same amount of work. This means that if you move something a smaller distance you need to exert a greater force. On the other hand, if you want to exert less force, you need to move it over a greater distance. This is the force and distance trade off, or mechanical advantage , which is common to all simple machines. With mechanical advantage, the longer a job takes, the less force you need to use throughout the job. Most of the time, we feel that a task is hard because it requires us to use a lot of force. Therefore, using the trade off between distance and force can make our task much easier to complete.

The wedge is a simple machine that forces objects or substances apart by applying force to a large surface area on the wedge, with that force magnified to a smaller area on the wedge to do the actual work. A nail is a common wedge with a wide nail head area where the force is applied, and a small point area where the concentrated force is exerted. The force is magnified at the point, enabling the nail to pierce wood. As the nail sinks into the wood, the wedge shape at the point of the nail moves forward, and forces the wood apart.

Figure 1: An axe is an example of a wedge.

Everyday examples of wedges include an axe (see Figure 1), nail, doorstop, chisel, saw, jackhammer, zipper, bulldozer, snow plow, horse plow, zipper, airplane wing, knife, fork and bow of a boat or ship.

The wheel and axle is a simple machine that reduces the friction involved in moving an object, making the object easier to transport. When an object is pushed, the force of friction must be overcome to start it moving. Once the object is moving, the force of friction opposes the force exerted on the object. The wheel and axle makes this easier by reducing the friction involved in moving an object. The wheel rotates around an axle (essentially a rod that goes through the wheel, letting the wheel turn), rolling over the surface and minimizing friction. Imagine trying to push a 9,000-kilogram (~10-ton) block of stone. Wouldn"t it be easier to roll it along using logs placed underneath the stone?

Everyday examples of the wheel and axle include a car, bicycle, office chair, wheel barrow, shopping cart, hand truck and roller skates.

A lever simple machine consists of a load, a fulcrum and effort (or force). The load is the object that is moved or lifted. The fulcrum is the pivot point, and the effort is the force required to lift or move the load. By exerting a force on one end of the lever (the applied force), a force at the other end of the lever is created. The applied force is either increased or decreased, depending on the distance from the fulcrum (the point or support on which a lever pivots) to the load, and from the fulcrum to the effort.

Figure 2: A crowbar is an example of a lever.

copyright

Copyright © 2004 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA. All rights reserved. With notations by the ITL Program, University of Colorado at Boulder, 2005.

Everyday examples of levers include a teeter-totter or see-saw, crane arm, crow bar, hammer (using the claw end), fishing pole and bottle opener. Think of a how you use a crowbar (see Figure 2). By pushing down on the long end of the crowbar, a force is created at the load end over a smaller distance, once again, demonstrating the tradeoff between force and distance.

Inclined planes make it easier to lift something. Think of a ramp. Engineers use ramps to easily move objects to a greater height. There are two ways to raise an object: by lifting it straight up, or by pushing it diagonally up. Lifting an object straight up moves it over the shortest distance, but you must exert a greater force. On the other hand, using an inclined plane requires a smaller force, but you must exert it over a longer distance.

Everyday examples of inclined planes include highway access ramps, sidewalk ramps, stairs, inclined conveyor belts, and switchback roads or trails.

Figure 3: A car jack is an example of a screw-type simple machine that enables one person to lift up the side of a car.

A screw is essentially an inclined plane wrapped around a shaft. Screws have two primary functions: they hold things together, or they lift objects. A screw is good for holding things together because of the threading around the shaft. The threads grip the surrounding material like teeth, resulting in a secure hold; the only way to remove a screw is to unwind it. A car jack is an example of a screw being used to lift something (see Figure 3).

Everyday examples of screws include a screw, bolt, clamp, jar lid, car jack, spinning stool and spiral staircase.

Figure 4: A pulley on a ship helps people pull in a heavy fishing net.

A pulley is a simple machine used to change the direction of a force. Think of raising a flag or lifting a heavy stone. To lift a stone up into its place on a pyramid, one would have to exert a force that pulls it up. By using a pulley made from a grooved wheel and rope, one can pull down on the rope, capitalizing on the force of gravity, to lift the stone up . Even more valuable, a system of several pulleys can be used together to reduce the force needed to lift an object.

Everyday examples of pulleys in use include flag poles, elevators, sails, fishing nets (see Figure 4), clothes lines, cranes, window shades and blinds, and rock climbing gear.

Compound Machines

A compound machine is a device that combines two or more simple machines. For example, a wheelbarrow combines the use of a wheel and axle with a lever. Using the six basic simple machines, all sorts of compound machines can be made. There are many simple and compound machines in your home and classroom. Some examples of the compound machines you may find are a can opener (wedge and lever), exercise machines/cranes/tow trucks (levers and pulleys), shovel (lever and wedge), car jack (lever and screw), wheel barrow (wheel and axle and lever) and bicycle (wheel and axle and pulley).

Vocabulary/Definitions

Design: (verb) To plan out in systematic, often graphic form. To create for a particular purpose or effect. Design a building. (noun) A well thought-out plan.

Engineering: Applying scientific and mathematical principles to practical ends such as the design, manufacture and operation of efficient and economical structures, machines, processes and systems.

Force: A push or pull on an object.

Inclined plane: A simple machine that raises an object to greater height. Usually a straight slanted surface and no moving parts, such as a ramp, sloping road or stairs.

Lever: A simple machine that increases or decreases the force to lift something. Usually a bar pivoted on a fixed point (fulcrum) to which force is applied to do work.

Mechanical advantage: An advantage gained by using simple machines to accomplish work with less effort. Making the task easier (which means it requires less force), but may require more time or room to work (more distance, rope, etc.). For example, applying a smaller force over a longer distance to achieve the same effect as applying a large force over a small distance. The ratio of the output force exerted by a machine to the input force applied to it.

Pulley: A simple machine that changes the direction of a force, often to lift a load. Usually consists of a grooved wheel in which a pulled rope or chain runs.

Pyramid: A massive structure of ancient Egypt and Mesoamerica used for a crypt or tomb. The typical shape is a square or rectangular base at the ground with sides (faces) in the form of four triangles that meet in a point at the top. Mesoamerican temples have stepped sides and a flat top surmounted by chambers.

Screw: A simple machine that lifts or holds materials together. Often a cylindrical rod incised with a spiral thread.

Simple machine: A machine with few or no moving parts that is used to make work easier (provides a mechanical advantage). For example, a wedge, wheel and axle, lever, inclined plane, screw, or pulley.

Spiral: A curve that winds around a fixed center point (or axis) at a continuously increasing or decreasing distance from that point.

Tool: A device used to do work.

Wedge: A simple machine that forces materials apart. Used for splitting, tightening, securing or levering. It is thick at one end and tapered to a thin edge at the other.

Wheel and axle: A simple machine that reduces the friction of moving by rolling. A wheel is a disk designed to turn around an axle passed through the center of the wheel. An axle is a supporting cylinder on which a wheel or a set of wheels revolves.

Work: Force on an object multiplied by the distance it moves. W = F x d (force multiplied by distance).

Associated Activities

  • Stack It Up! - Students analyze and begin to design a pyramid. They perform calculations to determine the area of their pyramid base, stone block volumes, the number of blocks required for their pyramid base, and make a scaled drawing of a pyramid on graph paper.
  • Choosing a Pyramid Site - Working in engineering project teams, students choose a site for the construction of a pyramid. They base their decision on site features as provided by a surveyor"s report; distance from the quarry, river and palace; and other factors they deem important to the project.

Lesson Closure

Today, we have discussed six simple machines. Who can name them for me? (Answer: Wedge, wheel and axle, lever, inclined plane, screw, and pulley.) How do simple machines make work easier? (Answer: Mechanical advantage enables us to use less force to move an object, but we have to move it a longer distance.) Why do engineers use simple machines? (Possible answers: Engineers creatively use their knowledge of science and math to make our lives better, often using simple machines. They invent tools that make work easier. They accomplish huge tasks that could not be done without the mechanical advantage of simple machines. They design structures and tools to use our environmental resources better and more efficiently.) Tonight, at home, think about everyday examples of the six simple machines. See how many you can find around your house!

Complete the KWL Assessment Chart (see the Assessment section). Gauge students" understanding of the lesson by assigning the Simple Machines Worksheet as a take-home quiz. As an extension, use the attached . Review the information and answer any questions. Suggest the students keep the sheet handy in their desks, folders or journals.

Lesson Summary Assessment

Closing Discussion: Conduct an informal class discussion, asking the students what they learned from the activities. Ask the students:

  • Who can name the different types of simple machines? (Answer: Wedge, wheel and axle, lever, inclined plane, screw, and pulley.)
  • How do simple machines make work easier? (Answer: Mechanical advantage enables us to use less force to move an object, but we have to move it a longer distance.)
  • Why do engineers use simple machines? (Possible answers: Engineers creatively use their knowledge of science and math to make our lives better, often using simple machines. They invent tools that make work easier. They accomplish huge tasks that could not be done without the mechanical advantage of simple machines. They design structures and tools to use our environmental resources better and more efficiently.)

Remind students that engineers consider many factors when they plan, design and create something. Ask the students:

  • What are the considerations an engineer must keep in mind when designing a new structure? (Possible answers: Size and shape (design) of the structure, available construction materials, calculation of materials needed, comparing materials and costs, making drawings, etc.)
  • What are the considerations an engineer must keep in mind when choosing a site to build a new structure? (Possible answers: Site physical characteristics , distance to construction resources , suitability for the structure"s purpose .)

KWL Chart (Conclusion): As a class, finish column L of the KWL Chart as described in the Pre-Lesson Assessment section. List all of the things they learned about simple machines. Were all of the W questions answered? What new things did they learn?

Take-Home Quiz: Gauge students" understanding of the lesson by assigning the Simple Machines Worksheet as a take-home quiz.

Lesson Extension Activities

Use the attached Simple Machines Scavenger Hunt! Worksheet to conduct a fun scavenger hunt. Have the students find examples of all the simple machines used in the classroom and their homes.

Bring in everyday examples of simple machines and demonstrate how they work.

Illustrate the power of simple machines by asking students to do a task without using a simple machine, and then with one. For example, create a lever demonstration by hammering a nail into a piece of wood. Have students try to pull the nail out, first using only their hands

Bring in a variety of everyday examples of simple machines. Hand out one out to each student and have them think about what type of simple machine it is. Next, have students place the items into categories by simple machines and explain why they chose to place their item there. Ask students what life would be like without this item. Emphasize that simple machines make our life easier.

See the Edheads website for an interactive game on simple machines: http://edheads.org.

Engineering Design Fun with Levers: Give each pair of students a paint stirrer, 3 small plastic cups, a piece of duct tape and a wooden block or spool (or anything similar). Challenge the students to design a simple machine lever that will throw a ping pong ball (or any other type of small ball) as high as possible. In the re-design phase, allow the students to request materials to add on to their design. Have a small competition to see which group was able to send the ping pong ball flying high. Discuss with the class why that particular design was successful versus other variations seen during the competition.

Additional Multimedia Support

See http://edheads.org for a good simple machines website with curricular materials including educational games and activities.

References

Dictionary.com. Lexico Publishing Group, LLC. Accessed January 11, 2006. (Source of some vocabulary definitions, with some adaptation) http://www.dictionary.com

Simple Machines. inQuiry Almanack, The Franklin Institute Online, Unisys and Drexel eLearning. Accessed January 11, 2006. http://sln.fi.edu/qa97/spotlight3/spotlight3.html

Contributors

Greg Ramsey; Glen Sirakavit; Lawrence E. Carlson; Jacquelyn Sullivan; Malinda Schaefer Zarske; Denise Carlson, with design input from the students in the spring 2005 K-12 Engineering Outreach Corps course

Copyright

© 2005 by Regents of the University of Colorado.

Supporting Program

Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder

Acknowledgements

The contents of these digital library curricula were developed by the Integrated Teaching and Learning Program under National Science Foundation GK-12 grant no. 0338326. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government. 

Last modified: February 11, 2019

Topic: Simple Machines PSSA: 3.4.7.C / S8.C.3.1

Objective: TLW compare different types of simple machines. TLW compare different types of simple machines. TLW explain the difference between a simple machine and a compound machine. TLW explain the difference between a simple machine and a compound machine.

MI #1: Levers A lever is a simple machine that has a bar that pivots on a fixed point called a fulcrum. A lever is a simple machine that has a bar that pivots on a fixed point called a fulcrum. Levers are classified based on the location of the input force, load, and the fulcrum. Levers are classified based on the location of the input force, load, and the fulcrum.

MI #2: Classes of Levers First class levers have the fulcrum between the input force and the load. First class levers have the fulcrum between the input force and the load. - Includes see-saws Second class levers have the load between the input force and the fulcrum. Second class levers have the load between the input force and the fulcrum. - Includes wheelbarrows Third class levers have the input force between the load and the fulcrum. Third class levers have the input force between the load and the fulcrum. - Includes hammers and fishing poles

Mi #3: Pulleys A pulley is a simple machine that has a grooved wheel that holds a rope or a chain. A pulley is a simple machine that has a grooved wheel that holds a rope or a chain. There are three types of pulleys; fixed, movable, and block and tackle. There are three types of pulleys; fixed, movable, and block and tackle.

MI #4: Wheel and Axle A wheel and axle consists of two circular objects of different sizes that rotate on the same axis. A wheel and axle consists of two circular objects of different sizes that rotate on the same axis. The axle rotates a smaller distance than the wheel, which results in a greater output force. The axle rotates a smaller distance than the wheel, which results in a greater output force.

MI #5: Inclined Planes An inclined plane is a straight slanted surface. An inclined plane is a straight slanted surface. A wedge is a pair of inclined planes that move. A wedge is a pair of inclined planes that move. A screw is an inclined plane wrapped around a cylinder. A screw is an inclined plane wrapped around a cylinder.

MI #6: Compound Machines A compound machine is a machine that is made of two or more simple machines working together. A compound machine is a machine that is made of two or more simple machines working together. Because compound machines have more moving parts, their mechanical efficiency is typically low. Because compound machines have more moving parts, their mechanical efficiency is typically low.

So What…? Real Life Application Machines make work easier, so it is important to understand the different types of simple machines. Machines make work easier, so it is important to understand the different types of simple machines.

). The steeper the slope, or incline, the more nearly the required force approaches the actual weight. Expressed mathematically, the force F required to move a block D up an inclined plane without friction is equal to its weight W times the sine of the angle the inclined plane makes with the horizontal (θ). The equation is F = W sin θ.

In this representation of an inclined plane, D represents a block to be moved up the plane, F represents the force required to move the block, and W represents the weight of the block. Expressed mathematically, and assuming the plane to be without friction, F = W sin θ.

The principle of the inclined plane is used widely-for example, in ramps and switchback roads, where a small force acting for a distance along a slope can do a large amount of work.

The

A lever is a bar or board that rests on a support called a fulcrum. A downward force exerted on one end of the lever can be transferred and increased in an upward direction at the other end, allowing a small force to lift a heavy weight.

Two examples of levers(Left) A crowbar, supported and turning freely on a fulcrum f , multiplies a downward force F applied at point a such that it can overcome the load P exerted by the mass of the rock at point b . If, for example, the length a f is five times b f , the force F will be multiplied five times. (Right) A nutcracker is essentially two levers connected by a pin joint at a fulcrum f . If a f is three times b f , the force F exerted by hand at point a will be multiplied three times at b , easily overcoming the compressive strength P of the nutshell. Encyclopædia Britannica, Inc.

All early people used the lever in some form, for example, for moving heavy stones or as digging sticks for land cultivation. The principle of the lever was used in the swape, or , a long lever pivoted near one end with a platform or water container hanging from the short arm and counterweights attached to the long arm. A man could lift several times his own weight by pulling down on the long arm. This device is said to have been used in Egypt and India for raising water and lifting soldiers over battlements as early as 1500 bce .

Shadoof, central Anatolia, Turkey. Noumenon

The

A wedge is an object that tapers to a thin edge. Pushing the wedge in one direction creates a force in a sideways direction. It is usually made of metal or wood and is used for splitting, lifting, or tightening, as in securing a hammer head onto its handle.

The wedge was used in prehistoric times to split logs and rocks; an is also a wedge, as are the teeth on a saw. In terms of its mechanical function, the screw may be thought of as a wedge wrapped around a cylinder.

The

A wheel and axle is made up of a circular frame (the wheel) that revolves on a shaft or rod (the axle). In its earliest form it was probably used for raising weights or water buckets from wells.

Its principle of operation is best explained by way of a device with a large and a small gear attached to the same shaft. The tendency of a force, F , applied at the radius R on the large gear to turn the shaft is sufficient to overcome the larger force W at the radius r on the small gear. The force amplification, or , is equal to the ratio of the two forces (W :F ) and also equal to the ratio of the radii of the two gears (R :r ).

Two wheel and axle arrangements(A) With a large gear and a small gear attached to the same shaft, or axle, a force F applied at the radius R on the large gear is sufficient to overcome the larger force W at the radius r on the small gear, turning the axle. (B) In a drum and rope arrangement capable of raising weights, a large drum of radius R can be used to turn a small drum. An increase in mechanical advantage can be obtained by using the large drum to turn a small drum with two radii as well as a pulley block. When a force F is applied to the rope wrapped around the large drum, the rope wrapped around the small two-radius drum winds off of d (radius r 1) and onto D (radius r 2). The force W on the radius of the pulley block P is easily overcome, and the attached weight is lifted. Encyclopædia Britannica, Inc.

If the large and small gears are replaced with large- and small-diameter drums that are wrapped with ropes, the wheel and axle becomes capable of raising weights. The weight being lifted is attached to the rope on the small drum, and the operator pulls the rope on the large drum. In this arrangement the mechanical advantage is the radius of the large drum divided by the radius of the small drum. An increase in the mechanical advantage can be obtained by using a small drum with two radii, r 1 and r 2 , and a pulley block. When a force is applied to the large drum, the rope on the small drum winds onto D and off of d.

A measure of the force amplification available with the pulley-and-rope system is the velocity ratio, or the ratio of the at which the force is applied to the rope (V F ) to the velocity at which the weight is raised (V W ). This ratio is equal to twice the radius of the large drum divided by the difference in the radii of the smaller drums D and d. Expressed mathematically, the equation is V F /V W = 2R /(r 2 - r 1). The actual mechanical advantage W /F is less than this velocity ratio, depending on friction. A very large mechanical advantage may be obtained with this arrangement by making the two smaller drums D and d of nearly equal radius.

The

A pulley is a wheel that carries a flexible rope, cord, cable, chain, or belt on its rim. Pulleys are used singly or in combination to transmit and motion. Pulleys with grooved rims are called sheaves. In , pulleys are affixed to shafts at their axes, and power is transmitted between the shafts by means of endless belts running over the pulleys.

GK Bloemsma

One or more independently rotating pulleys can be used to gain mechanical advantage, especially for lifting weights. The shafts about which the pulleys turn may affix them to frames or blocks, and a combination of pulleys, blocks, and rope or other flexible material is referred to as a . The Greek mathematician (3rd century bce ) is reported to have used compound pulleys to pull a ship onto dry land.

Encyclopædia Britannica, Inc.

The

A screw is a usually circular cylindrical member with a continuous helical rib, used either as a fastener or as a force and motion modifier.

Although the Pythagorean philosopher (5th century bce ) is the alleged inventor of the screw, the exact period of its first appearance as a useful mechanical device is obscure. The invention of the is usually ascribed to Archimedes, but evidence exists of a similar device used for irrigation in Egypt at an earlier date. The screw press, probably invented in Greece in the 1st or 2nd century bce , has been used since the days of the Roman Empire for pressing clothes. In the 1st century ce , wooden screws were used in wine and olive-oil presses, and cutters (taps) for cutting internal threads were in use.

Screws and screw heads (A) Cap screw, (B) machine screw with oval head, (C) setscrew with hollow head, (D) self-tapping screw, (E) flat-head wood screw, (F) machine screw with Phillips head, (G) lag screw Encyclopædia Britannica, Inc.

Are made in a wide variety of diameters and lengths; when using the larger sizes, pilot holes are drilled to avoid splitting the wood. are large wood screws used to fasten heavy objects to wood. Heads are either square or hexagonal.

Screws that modify force and motion are known as . A screw jack converts (turning moment) to thrust. The thrust (usually to lift a heavy object) is created by turning the screw in a stationary nut. By using a long bar to turn the screw, a small force at the end of the bar can create a large thrust force. Workpiece tables on are moved linearly on guiding ways by screws that rotate in at the ends of the tables and mate with nuts fixed to the machine frame. A similar torque-to-thrust conversion can be obtained by either rotating an axially fixed screw to drive a rotationally fixed nut along the screw or by rotating an axially fixed nut to drive a rotationally fixed screw through the nut.

This article was most recently revised and updated by Robert Curley , Senior Editor.

Последние материалы раздела:

Чем атом отличается от молекулы Сравнение атома и молекулы
Чем атом отличается от молекулы Сравнение атома и молекулы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Что такое молекула и чем она отличается от атома Что такое изотопы
Что такое молекула и чем она отличается от атома Что такое изотопы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы
Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы

Вся материя вокруг нас, которую мы видим, состоит из различных атомов. Атомы отличаются друг от друга строением, размером и массой. Существует...