"Луч смерти": преимущества, недостатки и перспективы лазерного оружия США и России. Боевые лазеры как мировой тренд в разработках оружия нового поколения Как действует лазерное оружие

С учетом необходимости противодействия новым видам угроз, где традиционные системы вооружений и военной техники (ВВТ) оказываются все менее эффективными, военные возлагают все больше надежд на использование боевых лазеров. В этой связи представляет интерес современное состояние и перспективы создания эффективных образцов этого оружия, использующего в качестве поражающего средства лазерный луч, его реальные сильные и слабые стороны.

Могут ли лазеры заменить существующие традиционные виды вооружений и когда это может произойти – пока сказать сложно. Вместе с тем, с учетом стремительного роста этого научного направления, можно говорить о реальных достижениях в этой области, разработке и испытаниях реальных технологических демонстраторов будущих боевых лазеров.

Первые реальные научные исследования в отношении возможности военного применения лазеров начали проводить в США и СССР в середине 50-х гг ХХ века. Тогда же ученые начали первые эксперименты с принципиально новым перспективным, по мнению военных, направлением видом «супероружия». В США при этом использовали газовые лазеры, где в качестве рабочего тела использовался углекислый газ. Однако в связи с рассеиванием пучка излучения и низкими коэффициентами конверсии энергии использовать лазер в качестве оружия использование лазера в качестве оружия исключалось.

Преодолеть указанные трудности удалось только к середине 70-х гг. благодаря созданию химического газового лазера с рабочим телом в виде оксида йода или оксида дейтерия. Это ускорило процесс исследований и стало ключевым элементом при создании в ВВС США специальной системы под наименованием YAL-1.

Во времена президентства Рональда Рейгана она служила в качестве одного из элементов широко известной программы Стратегической Оборонной Инициативы (СОИ), объявленной 23 марта 1983 года с целью создания научно-технического задела для разработки широкомасштабной системы ПРО с элементами космического базирования. Эта программа также известна как «звездные войны». В ходе испытаний удалось перехватить и уничтожить несколько БПЛА и ракет, в т.ч. БР и даже ракет класса «воздух-воздух» AIM-9 Sidewinder.

Правда, некоторые источники скептически оценивали эти успехи, тем более, что вскоре программу закрыли. Но несмотря на официаьное закрытие, результаты экспериментов оказались востребованы и дали толчок более масштабным исследованиям в области лазерной техники. Прежде всего, это касалось поиска путей создания эффективных систем ПВО-ПРО с возможностью гарантированного перехвата атакующих ракет.

В 1978 году в рамках Объединенной программы ВМС США состоялись испытания, в ходе которых химический лазер, наводившийся на цель системой Hughes Navy Pointer / Tracker , успешно перехватил в полете и уничтожил противотанковую управляемую ракету TOW , a лазер MIRACL ( Mid Infrared Advanced Chemic а l Laser ) – воздушную цель-мишень BQM -34 Vandal . Это был настоящий успех .

Эксперименты с улучшенным химическим лазером инфракрасного диапазона MIRACL показали возможность создания лазера на флюориде дейтерия, способного развить мощность до 1 мВт в течение 70 сек. Более поздняя версия лазера имела выходную мощность до 2,2 мВт и на испытаниях в 1985 г. успешно разрушила на статических испытаниях БР, находившуюся в 1 км от лазерной пушки.

Наряду с этим, были сделаны и другие качественные открытия. В середине 70-х гг. начали появляться технологии лазеров на свободных электронах FEL (Free Electron Laser) с ускорением электронов практически до скорости света с последующим преобразованием энергии в переменном магнитном поле. Эта технология позволила выбирать для высокоэнергетических лазеров наиболее оптимальную длину волны в зависимости от условий среды распространения.

Сегодня в большинстве исследований в США используют высокоэнергетический лазер очень большой мощности HEL (High Energy Laser). Несмотря на то, что он уступает в мощности своим химическим/газовым аналогам и имеет худшие условия распространения лазерного излучения в различных средах, он более практичен для нормальной работы. Так, HEL требуется наличие только эффективного силового агрегата и системы охлаждения. Это как раз те условия, которые целиком устраивают военных.

Интенсивные исследования потенциальных возможностей боевых лазеров вновь активизировались в начале ХХІ столетия . В свою очередь, повышенный интерес к новому виду оружия обусловил довольно динамичное развитие и исследования в различных областях физики, химии, математики, электроники, механики и высокоэффективных источников энергии.

Существенное влияние на это оказали и геополитические изменения (международный кризис, локальные войны, политическая нестабильность во многих регионах мира), возникновение новых видов угроз (терроризм, гибридная война), быстрое развитие новых военных технологий (беспилотные системы, высокоточное оперативно-тактическое оружие, системы разведки, управления и передачи данны, а также РЭБ).

К этому можно добавить также понимание того, что традиционные системы, основанные на химических источниках энергии (порох, ракетное топливо) достигли предела своей эффективности и больше не имеют резервов для дальнейшего развития и совершенства.

Главным достижением от использования новейших технологий стало существенное увеличение точности и когерентности пучка лазерного излучения. С одной стороны, это связано с необходимостью поражения малых и маневренных воздушных целей (БПЛА, артиллерийские снаряды, минометные мины), имеющих широкий диапазон скоростей, а с другой – с необходимостью перехвата и быстрой выдачи данных для стрельбы. Причем этот процесс занимает намного меньше времени и является намного более сложным, чем традиционных системах ВВТ.

Качественно новое оружие потребовало и определения соответствующих требований. Лазерное излучение имеет принципиальные отличия от обычного света и вырабатывается в рамках упорядоченного процесса принудительной эмисии. Лазер излучает когерентный монохроматичный свет в виде параллельного пучка направленной энергии. Лазерное излучение распространяется со скоростью фотонов (расстояние в 100 км преодолевает за 1/3 тыс доли секунды), что в 24 000 ÷25 000 раз превышает скорость современных ракет и является убедительным аргументом в пользу развития боевых лазеров.

Когерентность генерируемого лазерного света представляет собой пространственно-временное упорядочение составляющих его электро-магнитных осцилляций и является важнейшим преимуществом лазера. Считается, что средняя величина энергии излучения, необходимой для испарения 1 cм 3 материала, должна составлять порядка 100÷200 кДж. Вместе с тем, если принять, что для уничтожения цели достаточным будет ограничиться инициацией разогрева ее наиболее уязвимых элементов, затраты будут меньше примерно в 5 раз для стали и до 23 – для олова. Для легковоспламеняющихся материалов и оптических приспособлений затраты будут еще ниже.

В этой связи, современная философия применения лазерного оружия предполагает не полное уничтожение потенциальной цели, а на поражении ее наиболее уязвимых и чувствительных элементов (топливо, оптоэлектронный блок, система управления и т.п.). Уничтожение или повреждение последних должно повлечь за собой повреждение или уничтожение цели .

Создание лазерного пучка большой плотности на больших дистанциях требует наличия длиннофокусных и соответственно, быстрозаменяемых оптических систем либо очень эффективных систем охлаждения линз и зеркал. Минимальный диаметр пучка излучения, по оценкам ученых, должен быть не менее 100 мм, в то время, как время реакции – не более 6 секунд (для систем типа C-RAM соответственно, 60 мм и до 20 секунд). При этом в процессе распространения в атмосфере лазерный луч (пучок) находится под сильным воздействием различных внешних факторов, как кратко- так и долговременных. К тому же, в условиях атмосферы излучение теряет часть мощности вследствие процессов рассеивания и поглощения.

К тому же, остаются нерешенными и некоторые технические проблемы, например, в части наведения на цель. Так, для выделения на поверхности потенциальной цели условной точки (пятна) диаметром 80 мм и одновременного сохранения неизменности положения лазерного пучка в пространстве в пределах 20÷30 мм в период освежения, равный 1 мс (для цели, удаленной на 5000 м и двигающейся со скоростью 10 км/сек), требуется точность наведения лазерной пушки в пределах нескольких микрорадиан. Для этого требуются высокоточные системы обнаружения целей и наведения. В этой связи направление пучка лазерного излучения на заданную цель и удержание в пределах определенных параметров составляет сегодня одну из основных проблем, требующих решения.

Большая мощность лазерного импульса позволяет сократить время уничтожения цели и снизить затраты на нагревание атмосферы. Последнее связано с созданием лазерным пучком пути в условиях низкой видимости, дымки, облачности и т.п.

Благодаря уникальным свойствам, лазерное оружие рассматривается военными в качестве универсального, способного решаль широкий круг задач как оборонительного, так и наступательного характера. При этом оно может применяться в различных средах и боевых условиях.

Лазерные системы не имеют отдачи при выстреле, в отличие от традиционных систем оружия. Его отличает универсальность по целям, которые могут поражаться в очень короткие промежутки времени, а также гибкость в применении (т.е. помимо уничтожения возможна нейтрализация цели путем вывода из строя или «ослепления» ее электроники) . Наконец, лазерное оружие не лимитировано наличием боеприпасов (заодно исключаются вопросы их производства, доставки и хранения). Работоспособность системы в этом плане ограничивается только наличием источника энергии и системы охлаждения.

От тактических лазерных систем требуется высокая мобильность, эффективная дальность поражения цели не менее 3000 м, высокие характеристики по обнаружению и сопровождению маневренных воздушных целей плюс возможность выполнения как минимум, 25-50 лазерных выстрелов в ходе одной миссии.

В частности, от разрабатываемой системы ПВО-ПРО типа VSHORAD (Германия), основанной на использовании боевых лазеров, требуется поражать цели на дистанциях от 1500-6000 м. Однако в настоящее время как раз этот параметр – возможная эффективная дальность поражения целей – и является ограничением. Другим недостатком или слабым местом является уязвимость оптического блока лазера от загрязнения или коррозии.

Представляют интерес также взгляды военных и ученых на направления дальнейших исследований и потенциальных направлений использования боевых лазеров. Например, тактическое применение лазера типа THEL в настоящее время рассматривается прежде всего для поражения всего спектра целей типа C-RAMM (Counter Rocket, Artillery, Mortar , Missile) – ракет, артиллерийских и минометных снарядов, баллистических ракет, а также относительно тихоходных воздушных целей.

Разработка таких систем ведется сегодня сразу в нескольких странах, в т.ч. в США, Германии и Израиле. Речь идет о создании химического лазера на фториде дейтерия в стационарной и мобильной версиях. Предварительные испытания дали позитивные результаты по перехвату и уничтожению, например, минометных мин. Правда, пока не удается повысить скорострельность системы.

Несколько иную задачу решали американские концерны Boeing i Northrop Grumman, работавшие в рамках программы создания технологического демонстратора высокоэнергетического лазера HEL TD (High Energy Laser Technology Demonstrator). В марте 2017 г. демонстратор мобильной лазерной системы, смотированной на базе стандартного армейского грузовика HEMTT, передали для проведения всесторонних испытаний в реальных условиях.

Назначение системы HEL TD – поражение целей типа C-RAMM, БПЛА, а также мин заграждения, взрывоопасных предметов и импровизированных взрывных устройств (UXO/C-IED), систем разведки и передачи данных, атакующих крылатых ракет или артиллерийских снарядов на безопасном расстоянии. Иначе говоря, новая система должна быть максимально универсальной наряду с низкими эксплуатационными затратами.

Уже первые испытания показали возможность развития лазером мощности до 58кВт за счет объединения в одном пучке нескольких отдельных лазерных лучей.

Демонстратор лазерной боевой системы LSD (Laser Weapon System Demonstrator) стал развитием программы по созданию прототипа боевого лазера для ВМС США MLD (Martime Laser Demonstration), реализованной концерном Northrop Grumman на базе твердотельного лазера. Исследовательская программа состоит из трех этапов и предусматривает создание боевого лазера мощностью 150 кВт, с обеспечением его электроэнергией от стандартной бортовой сети корабля. Первый контракт на выполнение работ предусматривает финансирование в объеме 125 млн долларов, сроком на 34 месяца.

В числе других программ следует отметить JHPSSL (Joint High Power Solid State Laser), предусматривающую создание наземных и морских версий 100-кВт твердотельных боевых лазеров с электрическим питанием, а также боевую систему Laser Weapon System (LaWS), т.е. лазер мощностью 30 кВт класса AN/SEQ-3 (XN-1). Последний в 2017 г. успешно прошел испытания на борту десантного корабля-дока ВМС США USS «Ponce», во время которых успешно поразил воздушную и морскую цели. Известно о планах начала серийного производства таких лазеров в США, начиная с 2020 года.

По оценкам специалистов, новое оружие отличается высокой надежностью и эффективностью, намного превысив все ожидания. Результаты данных испытаний и практический опыт эксплуатации лазерного оружия будут положены в основу очередной американской программы исследований в области твердотельных лазеров Solid State Laser Technology Maturation (SSL-TM).

Наряду с указанными разработками, в США продолжаются также исследования в части адаптации лазерного оружия к потребностям боевой авиации. Так, исследовательская лаборатория ВВС США активно работает сегодня над созданием передовой системы самообороны боевых летательных аппаратов, основанной на лазерных системах. Речь идет о создании технологического демонстратора высокоэнергетического лазера самообороны SHIELD (Self Protect High Energy Laser Demonstrator), задачей которого станет уничтожение атакующих ракет класса «воздух-воздух».

SHIELD можно рассматривать в качестве первой в своем роде активной системы самообороны самолетов, как боевых, так и транспортных в зоне боевых действий. Первая фаза проекта предусматривает создание уже в 2019 году устройства, основанного на использовании лазера средней мощности. Вторая фаза (2021 г.) предусматривает создание передовой системы уже на базе лазера большой мощности с возможностью использования его не только для обороны, но также и для наступательных действий.

На первом этапе, кроме химического/газового лазера, также рассматривается возможность использования лазера на свободных электронах. Одним из основных вопросов в проекте будет создание высокоэффективного и высокопродуктивного источника энергии на борту самолета для питания лазера во время полета. При этом необходимо будет совратить его массу и размеры, интегрировав с остальными бортовыми системами управления и передачи данных.

Высокоэнергетические твердотельные лазеры SSHEL ( Solid State High Energy Laser ) обладают намного лучшими характеристиками, чем их химические аналоги, но в то же время, их стоимость намного выше . Поэтому развитие этого направления требует использования технологий глубокой миниатюризации элементов. В этой связи часть экспертов полагает, что конечный результат может и не оправдать высоких затрат. вартість.

Лазерная система ПВО самообороны LADS (Laser Area Defense System), разработана концерном Raytheon для замены существующего артиллерийского комплекса ПВО самообороны CIWS Phalanx. LADS должна обеспечить более высокую универсальность применения системы против более широкого спектра угроз, иметь более высокую дальность действия. Его преимуществом будет отсутствие необходимости резервировать место и объемы для хранения боекомплекта, который в силу специфики лазеров будет неограниченным.

Одним из мировых разработчиков лазерного оружия является Китай. По оценкам американских экспертов, высокоэнергетическими системами в КНР занимаются до 30% из 10000 институтов и организаций.

В 2015 г. китайская компания «Цзююань» провела первые успешные испытания лазерной системы перехвата маловысотных воздушных целей. Известно, что система способна в течение 5 сек. обнаружить и уничтожить малозаметную подвижную цель, имеющую скорость до 50 км/час на высотах до 500 м. Дальность действия системы составляет 2 км (в пределах радиуса действия сверхмалых БПЛА).

В начале 2017 г. сообщалось о создании в Китае самого мощного в мире ультрафиолетового лазера на свободных электронах DCLS , работающего в «вакуумной» части ультрафиолетового диапазона .

Тогда же сообщалось и о создании в Китае мобильного наземного лазерного комплекса «Silent Hunter», использующего лазер мощностью от 30 до 100 кВт. Максимальная дальность действия составляет 4000 м. На базе этого лазера создается более мощная версия для перехвата ракет.

Наряду с этим, известно о разработке в Китае вариантов лазерного стрелкового оружия, в т.ч. нелетального действия.

В России испытаны лазерные системы воздушного и наземного базирования (программа А-60) в интересах ПВО-ПРО, но все работы засекречены. Российский концерн «Алмаз-Антей» работает над созданием мобильного боевого лазера на базе газодинамического аналога на углекислом газе. Боевой лазер будет смонтирован на колесной платформе.

В свою очередь, немецкий концерн Rheinmetall уже несколько лет разрабатывает стационарный и мобильный (на колесном шасси) варианты высокоэнергетического лазерного оружия HELS (High Energy Laser System) мощностью от 5 до 50 кВт. Особенностью разработки является широкое использование коммерческих волоконно-оптических источников лазерного излучения и технологии наложения пучков BST (Beam Superimposing Technology).

В настоящее время используются волоконно-оптические источники лазерного излучения, работающие в инфра-красном диапазоне на частотах 1060 – 1080 нм и сочетают в себе высокую мощность, качество пуска и надежность. Генерируемая энергия здесь передается на оптический резонатор и блок сопровождения цели посредством световода. Лазерный пучок формируется блоками BFU. Система предназначена прежде всего для борьбы с БПЛА, вертолетами, другими воздушными целями, в т.ч. типа C-RAMM и управляемыми противотанковыми ракетами.

Продолжаются исследования в части возможности использования системы HEL на боевых кораблях. Кроме названных выше, здесь предполагается поражать также скоростные надводные цели, прежде всего, катера пиратов и контрабандистов. Такой волоконно-оптический лазер мощностью в 10 кВт был успешно испытан на одном из кораблей ВМС, поразив намеченную учебную цель диаметом до 20 мм на дальности в 1000 м. А лазер мощностью в 30 кВт уничтожил цель на дальности свыше 3000 м.

Один из демонстраторов был установлен на колесном БТР GTK Boxer, с питанием электроэнергией от стандартной сети этой машины. Запаса энергии хватает на 1000 выстрелов с 2-3 паузами, что соответствует 30-минутной непрерывной стрельбе обычных систем. После этого аккумуляторы машины нуждаются в подзарядке.

Преимуществом системы HELS является универсальность и модульность конструкции, что позволяет интегрировать ее с различными платформами или системами ВиВТ. В свою очередь, планируется постепенное создание системы суммарной мощностью в 80 кВт (фактически это будут 4 объединенных между собой лазера мощностью по 20 кВт). Также предполагается довести стоимость одного выстрела до 1 євро.

Наряду с этим, совершенствуется система обнаружения и анализа данных, уменьшаются эксплуатационные затраты, обеспечивается парктически бесшумная работа системы и ее высокая скрытность от всех видов существующих на сегодня технических средств разведки (исключая сам момент выстрела).

Немецкая компания MBDA Deutschland также осуществляет испытания варианта боевого лазера вместе с автоматическим, независимым сенсором сопровождения цели и передачи данных. Сенсор будет преобразовывать первичные приблизительные данные о положении и элементах движения цели в точные.

Исследования, начатые в 2008 году на химическом/газовом лазере, в дальнейшем продолжили уже на оптико-волоконном аналоге. В ходе испытаний прежние линзы заменили на зеркальные системы, исходя из их технического совершенства и большего соответствия для применения в лазерных системах мощностью в 100 – 150 кВт. Данная система смонтирована на 20-футовом контейнере вместе с лазерной головкой кругового обзора. Сервоприводы управления лазерами и зеркалами формируют единый пучок излучения, наводимый на цель. Назначением такой лазерной пушки является уничтожение малых, скоростных и маневренных целей. В дальнейшем предполагается работать в направлении снижения размеров системы и увеличения мощности излучения.

Британский консорциум Dragonfire firm вместе с МBDA UK также проводит проектно-исследовательские разработки и испытания высокоэнергетических лазеров. На эти цели МО Великобритании выделило 30 млн фунтов стерлингов. Завершение создания технологического демонстратора ожидается в 2018 году с тем, чтобы в 2019 году провести полный цикл испытаний. Новая система предназначена для использования в наземных войсках и на флоте.

Силы обороны Израиля планируют принять на вооружение лазерную боевую систему Iron Beam, разработанную концерном Rafael и предназначенную для уничтожения целей типа C-RAMM. Комплекс включает два твердотельных лазера, РЛС и пост управления.

Собственную разработку в области высокоэнергетических лазеров — Yüksek Güçlü Lazer Silah Sistemi (YGLSS) – осуществляет турецкая фирма SAVAG совместно с концерном ASELSAN и университетом Bilkent (Анкара).

Система успешно прошла первые лабораторные испытания и принципиально подтвердила возможность применения ее для поражения движущихся целей. В дальнейшем предполагается закупить за рубежем прототип боевого лазера и интегрировать его с турецкими ВиВТ. После этого прототип будет заменен на отечественный аналог, производство которого должно занять до 2-х лет.

С 2011 г. собственные разработкт в области создания боевых лазеров начала также Индия. Там уже создана экспериментальная установка, которая в 2017 г. начала прохождение первых испытаний. В настоящее время удалось достичь дальности действия до 800 м., что считается явно недостаточным для реальных условий.

Созданию лазерного оружия должны также соответствовать экономические предпосылки. Так, стоимость существующих сегодня традиционных ВВТ можно оценить на основе методов экономического анализа. Так, стоимость самолета –истребителя на рынке вооружений составляет в среднем 60÷80 млн USD, крилатой ракеты — 2 млн USD, a БПЛА класса микро или мини — от 200 тыс до 1 млн USD (в зависимости от категории и оснащения). Стоимость артиллерийских систем колеблется от 1000 до нескольких сот тысяч USD.

С другой стороны, современные системы борьбы с ними, например, снаряд PAC-3, стоит даже 6 млн USD, стоимость ракеты Tamir израильского комплекса ПРО Iron Dome оценивается примерно от 30 до 50 тыс USD, a один залп системы самообороны, основанной на 35-мм орудиях с современными боеприпасами типа AHEAD стоит около 20 тыс USD (в случае уничтожения целей типа C-RAM стоимость возрастает до 70 тыс. USD).

В то же время, стоимость одного выстрела лазерной пушки, установленной на американском корабле-доке USS «Ponce», сосатвляет менее одного доллара!

На исследования, разработку и испытания лазерной системы LaWS (Laser Weapon System) ВМС США израсходовали до 40 млн USD. Это относитеьно небольшая сумма в сравнении с аналогичными разработками в сфере традиционных ВВТ. Также стоит отметить, что в процессе разработки лазерной техники широко используются уже апробированные коммерческие решения и технологии гражданского рынка.

Таким образом, на основании изложенного можно сделать следующие выводы.

Боевые лазерные системы сегодня все еще пребывают в состоянии развития. Но уже первые испытания на практике показали высокую эффективность и соответствие потребностям вооруженных сил. В то же время, для повышения эффективности применения лазеров в военном деле следует решить целый ряд не только технологических вопросов (освоение новых технологий), но и разработать концепцию исполльзования этого нового вида оружия. Предстоит разработать также тактику использования боевых лазеров, определить условия эксплуатации и меры безопасности. Быстрое развитие технологий дает все основания полагать, что процесс совершенствования нового оружия будет осуществляться достаточно быстро.

С другой стороны, хотя в отдаленной перспективе новое оружие пока не заменит большинство из существующих сегодня видов ВВТ, уже понятно, что оно придает войскам не только совершенно новые уникальные боевые возможности, но и значительно повышает возможности существующих видов вооружений.

В частности, в экспертном сообществе полагают, что лазерное оружие будет играть исключительно важную роль прежде всего в качестве средства ПВО-ПРО, эффективно дополняя существующие традиционные системы.

В то же время, как оказалось, лазеры пока не в состоянии поражать скоростные воздушные цели (7М), крылатые ракеты с малой ЭПР и малозаметные для РЛС. К тому же, некоторые современные конструктивные материалы, такие, как композиты на углеродной основе, малоуязвимы для лазерного излучения. В таком случае вся надежда возлагается на разогрев лазерами внутренностей ракеты в надежде вывести ее из строя. Однако такое решение потребует еще больших затрат энергии и/или увеличения времени лазерного освежения цели.

Владимир Заблоцкий ,

эксперт ИКК Defense Express

Первый лазер был продемонстрирован публике в 1960 году, и западные журналисты сразу же прозвали его «лучом смерти». Вот уже более полувека ученые и инженеры США, СССР, а теперь и России ведут разработки лазерного оружия. На эти проекты потрачены десятки миллиардов долларов и рублей.

Время от времени появляются сообщения об успешных испытаниях лазерных вооружений. Один из последних примеров: в августе 2014 года на военном корабле США Ponce в Персидском заливе была испытана лазерная пушка LaWS мощностью 30 кВт, которая сожгла мотор на надувной лодке и сбила беспилотник. Заметим, что в нашей стране беспилотники лазером сбивали еще 40 лет назад. Тем не менее реального лазерного оружия нет ни в России, ни в США. Почему?
Вот несколько историй про лазерные пистолеты, ружья и танки, которые так и не стали массовыми.
1. Пистолет космонавта
На определенном этапе развития советской космической программы у военных возник закономерный, с их точки зрения, вопрос: чем будут сражаться советские космонавты, если дело дойдет до абордажа и рукопашной схватки в космосе. Ответом стало индивидуальное лазерное оружие самообороны космонавта. Этот артефакт ныне хранится в музее Военной академии ракетных войск стратегического назначения, где лазерный пистолет и был разработан в 1984 году.
В аварийном запасе космонавтов вообще-то есть огнестрельное оружие: трехствольный пистолет ТП-82. Однако предназначен он для использования на земле против диких зверей в случае аварийной посадки. (Американцы, кстати, ограничились вооружением своих астронавтов специальными ножами Astro 17.) Однако в космосе обычный пистолет использовать затруднительно: во-первых, отдача от выстрела в невесомости представляет собой большую проблему для стреляющего, а самое главное - пуля, пробившая обшивку корабля, убьет не только противника, но и обладателя пистолета. Идеальным оружием для космоса выглядит луч лазера, но для него нужен очень мощный источник энергии. И тогда конструкторы предложили использовать для накачки лазера пиротехническую лампу-вспышку. Такая лампа изготавливалась в виде патрона калибром 10 мм, что позволило сделать лазерное оружие в габаритах обычного пистолета. Магазин содержал 8 патронов. Был сделан образец и в виде револьвера с барабаном на 6 патронов. Энергия его излучения была сравнима с энергией пули пневматической винтовки. Луч мог повредить глаза или оптические приборы на расстоянии до 20 м, но при этом не пробивал обшивку. Оружие было испытано и изготовлено в 1984 году, однако до серийного производства и принятия на вооружение дело так и не дошло: началась разрядка международных отношений, и сугубо военные пилотируемые программы были закрыты.
2. Ослепительные перспективы
4 апреля 1997 года вертолет канадских ВВС, сопровождавший выход американской атомной подводной лодки «Огайо» в пограничном между США и Канадой проливе Хуан-де-Фука, приблизился к российскому сухогрузу «Капитан Ман». На борту вертолета, кроме пилота-канадца Патрика Барнса, находился в качестве наблюдателя офицер ВМФ США Джек Дейли. Им показались подозрительными антенны на «Капитане Мане» и сам факт появления российского судна в проливе в момент выхода подводного атомохода. Решено было провести облет и фотографирование корабля. Во время этой операции пилот и наблюдатель зафиксировали вспышку на борту судна и почувствовали сильную резь в глазах.
Врачи констатировали ожог сетчатки глаза как у пилота, так и у наблюдателя. Прибывший в порт сухогруз был тщательно обыскан: несколько десятков представителей ФБР и береговой охраны США в течение 18 часов осматривали корабль, но никаких следов лазерного оружия не нашли. Оба пострадавших, кстати, из-за проблем со здоровьем вынуждены были уйти с военной службы, а американец позже даже подал в суд на Дальневосточное пароходство, которому принадлежал «Капитан Ман». Адвокаты утверждали, что Дейли стал жертвой «жестокой атаки иностранного государства на американской территории». Однако доказать, что воздействие произошло именно с борта российского судна, не удалось. Яркая точка, зафиксированная на одном из снимков, могла быть отблеском от иллюминатора.
Ослепляющее оружие разрабатывалось во многих странах. Китай, к примеру, в 1995 году демонстрировал лазерное ружье ZM-87, способное полностью лишить зрения противника на расстоянии в несколько километров. Однако в том же 1995 года была подписана международная конвенция, запрещающая использовать лазер для необратимого ослепления людей. Для временного ослепления - пожалуйста. К примеру, на вооружении МВД России вполне официально стоит специальный лазерный фонарь «Поток», вызывающий временную потерю зрения при воздействии на расстоянии 30 м. В США разработана лазерная винтовка PHASR. Великобритания применяла слепящие ружья Dazzler против аргентинских летчиков во время Фолклендской войны. В октябре 1998-го лазер повредил зрение экипажа американского вертолета в Боснии. Было зафиксировано использование лазера в отношении вертолетов США со стороны Северной Кореи, после чего американские пилоты стали надевать специальные защитные маски. Впрочем, грань тут очень шаткая. Оружие, вызывающее временную слепоту на дистанции 10 км, выжжет глаза со 100 м. Есть и еще одна лазейка: не запрещено использовать лазер против оптических систем, а уж если кто-то смотрит в окуляр с другой стороны - его проблемы.
3. Лазерный танк
В Военно-техническом музее в подмосковной Ивановке можно увидеть удивительный экспонат. Внешне он напоминает лазерную «Катюшу» с 12 оптическими «стволами» на шасси самоходной гаубицы «Мста». Воинская часть, передавшая этот образец вооружения музею, даже не знала назначения этой техники. Между тем речь идет о самоходном лазерном комплексе 1К17 «Сжатие». Кстати, его создатель НПО «Астрофизика», один из основных разработчиков лазерного оружия в России, до сих пор отказывается давать информацию по этому оружию, поскольку гриф секретности с него еще не снят.
У любой современной боевой техники, будь то артсистема, танк или вертолет, есть одно уязвимое место - оптика. Не надо крушить броню, достаточно повредить хрупкие оптические системы, и противник становится беспомощным. Лазер - отличное средство для этого. Первое подобное устройство в СССР испытывали еще в 1982 году: самоходный лазерный комплекс 1К11 «Стилет» на шасси гусеничного минного заградителя был призван выводить из строя оптико-электронные системы наведения танков и самоходок. Обнаружив цель радаром, «Стилет» посредством лазерного зондирования находил оптическое оборудование по бликующим линзам, а затем поражал его лазерным импульсом, выжигая фотоэлементы.
В 1983 году был создан другой комплекс - «Сангвин». Он устанавливался на шасси зенитной самоходной установки «Шилка» и предназначался для поражения оптико-электронных систем вертолетов. На дистанции до 8 км лазер полностью выводил из строя прицелы, а на большем расстоянии ослеплял их на десятки минут.


Самоходный лазерный комплекс 1К17 «Сжатие» стал дальнейшим развитием подобной системы. От лазера определенной частоты оптику можно защитить фильтром. У «Сжатия» было 12 лазеров с разной длиной волны. 12 фильтров надеть на оптику невозможно. В 1990 году комплекс был выпущен в единственном экземпляре, прошел испытания и даже был рекомендован к принятию на вооружение, однако космическая стоимость не позволила начать его серийное производство. Ведь для одного комплекса требовалось вырастить 30 кг искусственных кристаллов. При этом эффективность лазерного оружия в реальном бою вызывала у военных очень большие сомнения.
4. Лазерное оружие «Газпрома»
21 июня 1991 года на скважине № 321 Карачаганакского нефтегазоконденсатного месторождения вспыхнул пожар. Языки пламени взлетали на 300 метров. Сбить огонь мешали металлоконструкции буровой установки. Чтобы уничтожить их, привлекли танк, но два дня пальбы ни к чему не привели: точности выстрелов оказалось недостаточной для уничтожения массивных металлических опор. Пожар не могли погасить три месяца. Именно тогда специалисты по ликвидации аварий стали наводить справки: а нет ли в стране более эффективного оружия?
Прошло 20 лет. 17 июля 2011 года похожая авария произошла на Западно-Таркосалинском месторождении в Ямало-Ненецком автономном округе. На ликвидацию металлоконструкций потребовалось всего 30 часов. Толстенные балки и трубы были срезаны Мобильным лазерным технологическим комплексом мощностью 20 кВт (МЛТК-20).
Еще более мощный вариант этой системы - МЛТК-50, способный резать сталь толщиной 120 мм на расстоянии 30 м, был продемонстрирован еще в 2003 году на авиашоу МАКС, генеральным спонсором которого, кстати, является ВТБ. Комплекс представлял собой установку, смонтированную на грузовике и прицепе: на одном - собственно лазер, на втором - авиационный двигатель, который снабжает лазер энергией. Западные специалисты задумчиво переглядывались при виде МЛТК-50. Уж больно она им что-то напоминала. Да, собственно, ее истинное происхождение никто особенно и не скрывал. Создателем «технологического комплекса по ликвидации аварий», который предлагали любому желающему за 2 млн долларов, являлся… концерн ПВО «Алмаз-Антей», с которым ВТБ связывает длительное сотрудничество. Среди рекламных материалов была раскадровка видеосъемки, на которой луч лазера сбивал беспилотник. Документ под названием «Испытания воздействия лазерного излучения на аэродинамическую мишень» датирован 1976 годом.
МЛТК, по сути, это и есть лазерная зенитка с демонтированной системой наведения. Почему же этот комплекс до сих пор не стоит на вооружение нашей армии? Чтобы ответить на этот вопрос, для начала давайте разберемся, а, собственно, о какой мощи идет речь? Что такое мощность в 50 кВт, которой обладает лазер МЛТК-50? Это приблизительно в два раза меньше, чем мощность выстрела… довоенного авиационного пулемета ШКАС, который устанавливали на истребитель И-15. При этом для обеспечения лазера энергией приходится возить с собой авиационную турбину в грузовике, не говоря о запасах топлива для нее. А ШКАС весил всего 11 кг.
Лазер стреляет дальше? В хорошую погоду - да. Недаром американцы испытывали свое лазерное орудие именно в Персидском заливе. А что будет, к примеру, в снежную бурю в Северной Атлантике? Лазерный луч очень чувствителен к пыли, аэрозолям и атмосферным осадкам. А что произойдет на реальном поле боя, окутанном дымом от взрывов? Долго ли протянет в сражении боевая машина, вооруженная приличного размера телескопом, пусть и покрашенным в зеленый цвет? Да и в хорошую погоду дальность действия лазерного луча оказывается вовсе не беспредельной. Военно-морской вариант и российским военным представлялся весьма перспективным направлением использования лазерного оружия: базирование на корабле давало комплексу необходимую мобильность, а размеры судна позволяли разместить на борту достаточно мощные генераторы. В рамках советской программы «Айдар» экспериментальную лазерную установку разместили на сухогрузе «Диксон», а энергетику ей обеспечивали три двигателя от самолета Ту-154.
Испытания прошли летом 1980 года: стреляли по мишени на берегу на расстоянии 4 км. Лазер попал в мишень, однако выяснилось, что до цели дошло только 5% энергии излучения. Все остальное поглотил влажный морской воздух. В результате всевозможных ухищрений в конце концов удалось добиться того, что луч прожигал обшивку самолета на расстоянии 400 м. В 1985 году программу «Айдар» закрыли.
5. Терра инкогнита
10 октября 1984 года на американском многоразовом корабле «Челленджер», который пролетал на высоте 365 км над озером Балхаш, внезапно отключилась связь, в работе оборудования возникли сбои, а астронавты почувствовали недомогание. Так проявила себя работа лазерного локатора 5Н26/ЛЭ-1, испытания которого проводились на полигоне Сары-Шаган. Этот проект впоследствии получил известность под названием «Терра». Его целью было создание мощного лазера ПРО, способного сбивать боеголовки баллистических ракет. Однако по «Челенджеру» в тот день отработал всего лишь локатор, предназначенный для сканирования космических объектов и боеголовок, а не оружие для их уничтожения.
Тем не менее американцы быстро поняли, что их корабль подвергся какому-то воздействию с территории СССР, и заявили протест. Больше высокоэнергетические средства локации для сопровождения американских пилотируемых кораблей не применялись. Локатор ЛЭ-1 во множестве экспериментов подтвердил свою работоспособность. Его точность по дальности составляла 10 м на расстоянии 400 км. А вот с боевым лазером дело не заладилось. Для уничтожения боеголовки нужно было излучение очень большой мощности, а у лазера очень низкий КПД: для генерации излучения мощностью 5 МВт нужна энергия в 50 МВт, а это мощность атомного ледокола.
В попытке решить эту проблему для накачки было предложено использовать энергию взрыва, который создавал ударную волну в ксеноне в так называемом фотодиссационном лазере. Эти устройства собирались из стандартных секций длиной 3 м. Наращивая длину, можно было получить мощность в 100 раз большую, чем у любого известного в то время лазера. Понятно, что такое устройство было одноразовым. Для получения нужной мощности необходимо было взорвать около 30 т взрывчатого вещества, поэтому генератор боевого излучения должен был располагаться не ближе 1 км от собственной системы наведения. Для передачи излучения на это расстояние предполагалось использовать подземный туннель. В конце концов от этой схемы отказались в пользу лазера другого типа, мощность которого довели до 500 кВт. С его помощью была поражена мишень размером с советскую пятикопеечную монету, правда на близком расстоянии. Увы, для поражения боеголовок ракет этого оказалась недостаточно. Итог «Терры» подвел нобелевский лауреат академик Николай Басов, научный руководитель этого проекта: «Мы твердо установили, что никто не сможет сбить боеголовку баллистической ракеты лазерным лучом». Программа была закрыта.
Над лазерным оружием работал и академик Александр Прохоров – другой советский ученый, получивший вместе с Николаем Басовым и американцем Чарлзом Таунсом в 1964 году Нобелевскую премию по физике за фундаментальные работы, приведшие к изобретению лазера. Его проект назывался «Омега» и предусматривал создание лазерного комплекса ПВО, который по мощности будет равен суммарной кинетической энергии типовой боевой части ракеты «земля – воздух». 22 сентября 1982 года комплекс 73Т6 «Омега-2М» поразил лазером радиоуправляемую мишень. По результатам этих исследований был создан мобильный вариант, однако на вооружение его так и не приняли. Причина проста. По совокупности боевых качеств лазерная система так и не смогла превзойти ракетные зенитные комплексы. Кому нужна зенитка, которой мешают облака?
6. Космический лазер
15 мая 1987 года состоялся первый старт советской сверхтяжелой ракеты «Энергия». В первом полете вместо «Бурана» она несла огромный черный объект с двумя надписями: «Мир-2» и «Полюс». Первая из них никакого отношения к объекту не имела и являлась, в сущности, маскировкой или, если хотите, рекламой советской пилотируемой станции нового поколения. А вторая надпись – «Полюс» – была несекретным обозначением программы создания лазерной боевой станции 17Ф19 «Скиф». Запущенный в 1987 году объект назывался «Скиф-ДМ», то есть динамический макет.
Боевая станция «Скиф» была ответом на американскую программу «Звездных войн» – Стратегическую оборонную инициативу (СОИ), предполагавшую уничтожение советских ядерных ракет посредством космических лазеров с ядерной накачкой. Наш «Скиф» не предназначался для истребления ракет. Его целью были спутники наведения, без которых система СОИ становилась «слепой». На «Скифе» предполагалось использовать газодинамический лазер РД-0600 мощностью 100 кВт. Однако при его применении в космосе возникали проблемы: для его накачки расходовалось большое количество рабочего тела – углекислого газа. Истечение этого газа дестабилизировало спутник, поэтому для космического применения была разработана система безмоментного выхлопа. Ее проверка и была главной задачей «Скифа-ДМ». Испытания маскировались под геофизический эксперимент по изучению взаимодействия искусственных газовых образований с ионосферой Земли.
Увы, сразу после отделения от «Энергии» станция диаметром 4 м, длиной 37 м и массой 77 т потеряла ориентацию и утонула в Тихом океане. Есть версия, что «Скиф» был погублен нарочно. За три дня до запуска Михаил Горбачев заявил, что СССР не будет выводить оружие в космос. Формально «Скиф-ДМ» не имел оружия на борту, но его испытания ставили главу государства в неловкое положение. Естественно, появилась версия о намеренности этой ошибки. Однако знакомство с техническими подробностями оснований для подобной интерпретации событий не дает. Ошибка в программе появилась задолго до заявлений Горбачева. Разумеется, можно сказать, что ошибку не стали исправлять нарочно. Но и это не так. О ней просто никто не знал. Ошибка была зафиксирована при наземных предстартовых испытаниях, однако времени на расшифровку этих данных до старта уже не было. Впрочем, даже успешный полет ничего не решил бы в судьбе «Скифа». Американцы закрыли свою программу СОИ, а мы отказались от вывода лазерного оружия в космос.
Никто не против мирного космоса, но уговорить мировые державы прекратить гонку вооружений можно только одним способом: продемонстрировав, что отказываться от оружия им придется не в одностороннем порядке.
Что же мы получаем в итоге? Ни одна разработка по лазерному оружию в нашей стране так и не дала реального результата? Не все так печально.
7. Лазер воздушного базирования
Одной из самых эффектных лазерных программ США стало создание системы воздушного базирования YAL-1а: на Boeing-747-400F был установлен лазер, с помощью которого предполагалось сбивать ракеты на активном участке траектории. Система была создана и успешно испытана, однако дальность ее действия оказалось всего 250 км, а подлететь на такое расстояние к стартующей ракете на Boeing-747 нереально даже в войне с Ираном. Проблема в том, что лазерный луч в атмосфере расширяется из-за рефракции: на расстоянии 100 км в результате рассеивания в воздухе радиус пятна уже достигает 20 м. Энергия лазерного луча, размазанная на такой площади, не опасна для ракеты. За счет использования адаптивной оптики американцам удалось сфокусировать луч до размеров баскетбольного мяча на дальности 250 км, но не более. Кроме того, современные российские ракеты используют нехитрые приемы борьбы с лазерным воздействием: они вращаются в полете, то есть луч не может греть одно и то же пятно постоянно. Наши ракеты совершают судорожные маневры, которые невозможно просчитать заранее. Наконец, используется теплозащитное покрытие. Все это делает YAL-1а бесполезным в качества средства ПРО. Его лазер слишком слаб для этого.
Мощность лазера НЕL, установленного на YAL-1a, составляет, страшно подумать, 1 МВт! Это меньше, чем мощность выстрела обычной авиационной пушки. При этом стоимость каждой такой «пушки» размером с Boeing-747 составляет около 1 млрд долларов. Что мешает увеличить мощность? Кроме известной проблемы с генераторами, для которых и при 1 МВт нужен огромный транспортный самолет, при более интенсивном излучении начинает плавиться оптика. В итоге американцы программу, на которую было потрачено, по разным оценкам, от 7 до 13 млрд долларов, в 2011 году закрыли как бесперспективную.
Лазер воздушного базирования создавался и в СССР. Но с одним существенным отличием. Он предназначался для поражения спутников, которые являются гораздо более адекватной целью для подобного оружия. Во-первых, если стрелять вверх, а не вниз, то плотные слои атмосферы не рассеивают луч. Во-вторых, для вывода из строя спутника не нужно очень большой мощности излучения – достаточно повредить его датчики ориентации и целевую оптику.
Носителем противоспутниковой лазерной системы А-60 стал транспортный Ил-76МД. В носовой его части установлен лазер наведения, а боевой лазер выдвигается вверх в виде башенки, которая в «нерабочее время» скрывается под створками в верхней части фюзеляжа. Первый полет летающая лаборатория 1А совершила в 1981 году. Второй экземпляр – 1А2 – взлетел в 1991 году. Есть сведения, что первая лаборатория сгорела в 1989 году во время наземных экспериментов на аэродроме Чкаловский. Вторая машина по-прежнему используется для испытаний.
По имеющимся сведениям, на А-60 используется тот же лазер РД-0600, который предполагалось применять и на боевой станции «Скиф» и который к 2011 году прошел полный цикл испытаний. Его масса – 760 кг. А для его накачки используются два турбореактивных двигателя АИ-24 массой 600 кг каждый. Мощность – 100 кВт. Работы в этом направлении засекречены, однако сообщалось, что 28 августа 2009 года лазер А-60 поразил спутник на высоте 1500 км. Любопытно, что это был геофизический японский спутник Ajisal, на котором расположены отражающие элементы, позволяющие легко определять его местоположение в космосе. От этих элементов и был получен отраженный сигнал. Ajisal не имел оптики на борту и от выстрела А-60 не пострадал. А вот разведывательный спутник при таком воздействии будет выведен из строя.
Лазеры активно используются в военном деле в системах прицеливания, разведки и связи. Однако боевой лазер пока не дает реального преимущества по сравнению с обычным оружием. Создавать громадные установки для уничтожения беспилотников и моторных лодок, причем исключительно в хорошую погоду, – слишком дорогое удовольствие. От уже готовой и испытанной совместно с США лазерной системы ПВО отказался, к примеру, Израиль в пользу комплекса «Железный купол» с обычными ракетами.
Лазер – это не оружие поля боя. Это оружие демонстрации своего превосходства. Американцы вольны тратить на это деньги. Но в России ситуация иная, поэтому лазерное оружие будет использоваться только там, где оно действительно эффективно.

Первый раз лазер был продемонстрирован широкой общественности в 1960 году, и практически сразу же журналисты назвали его «лучом смерти». С тех пор разработки лазерного оружия не прекращаются ни на минуту: более полувека им занимались ученые СССР и США. Даже после окончания Холодной войны американцы не закрыли свои проекты боевых лазеров, несмотря на затрачиваемые гигантские суммы. И все бы ничего — если бы эти миллиардные вложения принесли ощутимый результат. Однако и по сей день лазерное оружие остается скорее экзотическим шоу, чем эффективным средством поражения.

При этом некоторые эксперты считают, что «доведение до ума» лазерных технологий вызовет настоящую революцию в военном деле. Едва ли пехотинцы сразу получат лазерные мечи или бластеры — но все это будет настоящий прорыв, например, в противоракетной обороне. Как бы то ни было, подобное новое оружие появится еще нескоро.

Тем не менее, разработки продолжаются. Активнее всего они идут в США. Бьются над разработкой «лучей смерти» ученые и в нашей стране, лазерное оружие России создается на основе наработок, сделанных еще в советский период. Лазерами интересуются Китай, Израиль и Индия. Участвуют в этой гонке Германия, Великобритания и Япония.

Но прежде чем говорить о преимуществах и недостатках лазерного оружия, следует разораться в сути вопроса и понять, на каких физических принципах работают лазеры.

Что такое «луч смерти»?

Лазерное оружие – это вид наступательного и оборонительного вооружения, которое в качестве поражающего элемента использует лазерный луч. Сегодня слово «лазер» прочно вошло в обиход, но мало кто знает, что на самом деле это аббревиатура, начальные буквы от словосочетания Light Amplification by Stimulated Emission Radiation («усиление света в результате вынужденного излучения»). Ученые называют лазер оптическим квантовым генератором, способным преобразовывать различные виды энергии (электрическую, световую, химическую, тепловую) в узконаправленный пучок когерентного, монохроматического излучения.

В числе первых теоретическими обоснованием работы лазеров занимался величайший физик XX столетия Альберт Эйнштейн. Экспериментальное подтверждение возможности получения лазерного излучения были получены в конце 20-х годов.

Лазер состоит из активной (или рабочей) среды, в качестве которой может выступать газ, твердое тело или жидкость, мощного источника энергии и резонатора, обычно представляющего собой систему зеркал.

К нашему времени лазеры нашли применение в самых разных сферах науки и техники. Жизнь современного человека буквально наполнена лазерами, хотя он не всегда и догадывается об этом. Указки и системы считывания штрих-кодов в магазинах, проигрыватели компакт-дисков и приборы определения точного расстояния, голография – все это мы имеем только благодаря этому удивительному изобретению под названием «лазер». Кроме того, лазеры активно используются в промышленности (для резки, пайки, гравировки), медицине (хирургия, косметология), навигации, в метрологии и при создании сверхточной измерительной техники.

Используется лазер и в военном деле. Однако в основном его применение сводится к различным системам локации, наведения оружия и навигации, а также к лазерной связи. Были попытки (в СССР и США) создать ослепляющее лазерное оружие, которое бы выводило из строя вражескую оптику и системы прицеливания. Но настоящих «лучей смерти» военные до сих пор так и не получили. Слишком уж технически сложной оказалась задача создать лазер такой мощности, который бы мог сбивать вражеские летательные аппараты и прожигать танки. Только сейчас технологический прогресс достиг того уровня, на котором лазерные системы вооружения становятся реальностью.

Преимущества и недостатки

Несмотря на все сложности, связанные с разработкой лазерного оружия, работы в этом направлении продолжаются весьма активно, во всем мире на них ежегодно тратятся миллиарды долларов. В чем преимущества боевых лазеров по сравнению с традиционными системами вооружения?

Вот основные из них:

  • Высокая скорость и точность поражения. Луч движется со скоростью света и достигает цели практически мгновенно. Ее уничтожение происходит за считанные секунды, для переноса огня на другую цель необходим минимум времени. Излучение поражает именно ту область, на которую было направлено, не влияя на окружающие предметы.
  • Лазерный луч способен перехватывать маневрирующие цели, что выгодно отличает его от противоракет и зенитных ракет. Его скорость такова, что отклониться от него практически невозможно.
  • Лазер можно использовать не только для уничтожения, но и для ослепления цели, а также ее обнаружения. С помощью регулировки мощности можно воздействовать на цель в весьма широких пределах: от предупреждения до нанесения критических повреждений.
  • Луч лазера не имеет массы, поэтому при выстреле не нужно вносить баллистические поправки, учитывать направление и силу ветра.
  • Отсутствует отдача.
  • Выстрел из лазерной установки не сопровождается такими демаскирующими факторами, как дым, огонь или сильный звук.
  • Боекомплект лазера определяется только мощностью источника энергии. Пока лазер подключен к нему, его «патроны» никогда не кончатся. Относительно низкая стоимость одного выстрела.

Однако есть у лазеров и серьезные недостатки, которые и являются причиной того, что пока они не стоят на вооружении ни одной армии:

  • Рассеивание. Из-за рефракции лазерный луч расширяется в атмосфере и теряет фокусировку. На расстоянии в 250 км пятно лазерного луча имеет диаметр 0,3-0,5 м, что, соответственно, резко уменьшает его температуру, делая лазер неопасным для цели. Еще хуже воздействуют на луч дым, дождь или туман. Именно по этой причине создание дальнобойных лазеров пока невозможно.
  • Невозможность вести загоризонтный обстрел. Луч лазера – это идеально прямая линия, им можно стрелять только по видимой цели.
  • Испарение металла цели затеняет ее и делает лазер менее эффективным.
  • Высокий уровень энергопотребления. Как уже было сказано выше, КПД лазерных систем мал, поэтому для создания оружия, способного поразить цель, нужно очень много энергии. Этот недостаток можно назвать ключевым. Только в последние годы появилась возможность создания лазерных установок более-менее приемлемого размера и мощности.
  • От лазера легко защититься. С лазерным лучом довольно просто справиться с помощью зеркальной поверхности. Любое зеркало отражает его, независимо от уровня мощности.

Боевые лазеры: история и перспективы

Работы над созданием боевых лазеров в СССР продолжаются с начала 60-х годов. Больше всего военных интересовало применение лазеров в качестве средства противоракетной и противовоздушной обороны. Наиболее известными советскими проектами в этой области стали программы «Терра» и «Омега». Испытания советских боевых лазеров проводились на полигоне Сары-Шаган в Казахстане. Проектами руководили академики Басов и Прохоров – лауреаты Нобелевской премии за работы в области изучения лазерного излучения.

После распада СССР работы на полигоне Сары-Шаган были прекращены.

Любопытный случай произошел в 1984 году. Лазерным локатором – он являлся составной частью «Терры» - был облучен американский шаттл «Челенджер», что привело к нарушениям в работе связи и сбоям другого оборудования корабля. Члены экипажа почувствовали внезапное недомогание. Американцы быстро поняли, что причиной проблем на борту челнока является какое-то электромагнитное воздействие с территории Советского Союза, и выразили протест. Этот факт можно назвать единственным практическим применением лазера на протяжении Холодной войны.

Вообще следует отметить, что локатор установки действовал очень успешно, чего нельзя сказать о боевом лазере, который должен был сбивать вражеские боеголовки. Проблема была в недостатке мощности. Решить эту проблему так и не смогли. Ничего не вышло и с другой программой – «Омега». В 1982 году установка смогла сбить радиоуправляемую мишень, но в целом по эффективности и стоимости она значительно проигрывала обычным зенитным ракетам.

В СССР разрабатывалось ручное лазерное оружие для космонавтов, лазерные пистолеты и карабины лежали на складах до середины 90-х годов. Но на практике это несмертельное оружие так и не применялось.

С новой силой разработки советского лазерного оружия начались после объявления американцами о развертывании программы «Стратегической оборонной инициативы» (СОИ). Ее целью было создания эшелонированной системы противоракетной обороны, которая бы смогла уничтожать советские ядерные боеголовки на различных этапах их полета. Одним из основных инструментов поражения баллистических ракет и ядерных блоков должны были стать лазеры, размещенные на околоземной орбите.

Советский Союз был просто обязан ответить на этот вызов. И 15 мая 1987 года состоялся первый старт сверхтяжелой ракеты «Энергия», которая должна была вывести на орбиту боевую лазерную станцию «Скиф», предназначенную для уничтожения американских спутников наведения, входящих в систему ПРО. Сбивать их предполагалось газодинамическим лазером. Однако сразу после отделения от «Энергии» «Скиф» потерял ориентацию и упал в Тихом океане.

Были в СССР и другие программы разработки боевых лазерных систем. Одна из них – самоходный комплекс «Сжатие», работы над которым велись в НПО «Астрофизика». Его задачей было не прожигание брони танков неприятеля, а выведение из строя оптико-электронных систем вражеской техники. В 1983 года на базе самоходной установки «Шилка» был разработан еще один лазерный комплекс – «Сангвин», который предназначался для уничтожения оптических систем вертолетов. Следует отметить, что СССР как минимум не уступал США в «лазерной» гонке.

Из американских проектов наиболее известным является лазер YAL-1А, размещенный на самолете Boeing-747-400F. Реализацией этой программы занималась компания Boeing. Основной задачей системы является уничтожение баллистических ракет противника на участке их активной траектории. Лазер был успешно испытан, но его практическое применение находится под большим вопросом. Дело в том, что максимальная дальность «стрельбы» YAL-1А составляет всего 200 км (по другим источникам – 250). Boeing-747 просто не сможет подлететь на такое расстояние, если противник располагает хотя бы минимальной системой ПВО.

Следует отметить, что лазерное оружие США создается сразу несколькими крупными компаниями, каждая из которых уже имеет чем похвастать.

В 2013 году американцы испытали лазерную систему HEL MD мощностью 10 кВт. С ее помощью удалось сбить несколько минометных мин и беспилотник . В 2019 году планируется провести испытания установки HEL MD с мощностью в 50 киловатт, а к 2020 году должна появиться 100-киловаттная установка.

Еще одна страна, которая занимается активной разработкой противоракетных лазеров, — это Израиль. Ракеты типа «Кассам», применяемые палестинскими террористами, - многолетняя «головная боль» этой израильтян. Сбивать «Кассамы»с помощью противоракет очень дорого, поэтому лазер выглядит как очень неплохая альтернатива. Разработка лазерной системы ПРО Nautilus началась в конце 90-х годов, над ней совместно работали американская компания Northrop Grumman и израильские специалисты. Однако эта система так и не была принята на вооружение, Израиль вышел из этой программы. Американцы использовали накопленный опыт для создания более совершенной лазерной ПРО Skyguard, испытания которой начались в 2008 году.

Основу обеих систем – Nautilus и Skyguard – составлял химический лазер THEL мощностью 1 мВт. Американцы называют Skyguard прорывом в области лазерного оружия.

Большую заинтересованность в лазерном оружии проявляют военно-морские силы США. По замыслу американских адмиралов, лазеры могут быть использованы в качестве эффективного элемента корабельных систем ПРО и ПВО. К тому же мощность силовых установок боевых судов вполне позволяет сделать «лучи смерти» по-настоящему смертоносными. Из последних американских разработок следует упомянуть о лазерной установке MLD, разработанной компанией Northrop Grumman.

В 2011 году началась разработка новой оборонительной системы TLS, в состав которой, кроме лазера, должна входить еще и скорострельная пушка. Проектом занимаются компании Boeing и ВАЕ Systems. По замыслу разработчиков, эта система должна поражать крылатые ракеты, вертолеты, самолеты и надводные цели на дистанциях до 5 км.

Сейчас разработкой новых систем лазерного вооружения занимаются в Европе (Германия, Великобритания), в Китае и в РФ.

В настоящее время вероятность создания дальнобойного лазера для уничтожения стратегических ракет (боеголовок) или боевых летательных аппаратов на дальних расстояниях выглядит минимальной. Совсем другое дело тактический уровень.

В 2012 году компания Lockheed Martin представила широкой общественности довольно компактный комплекс ПВО ADAM, который производит уничтожение целей с помощью луча лазера. Он способен уничтожать цели (снаряды, ракеты, мины, БПЛА) на дистанциях до 5 км. В 2019 году руководство этой компании заявило о создании нового поколения тактических лазеров мощностью от 60 кВт.

Немецкая оружейная компания Rheinmetall обещает выйти на рынок с новым тактическим высокомощным лазером High Energy Laser (HEL) в 2019 году. Ранее заявлялось, что в качестве базы для этого лазера рассматриваются колесный автомобиль, колесный БТР и гусеничный БТР M113.

В 2019 году в США было объявлено о создании тактического боевого лазера GBAD OTM, основной задачей которого является защита от разведывательных и ударных БПЛА противника. В настоящее время этот комплекс проходит испытания.

В 2014 году на оружейной выставке в Сингапуре была проведена презентация израильского боевого лазерного комплекса Iron Beam. Он предназначен для поражения снарядов, ракет и мин на малых дистанциях (до 2 км). В состав комплекса входит две твердотельные лазерные установки, РЛС и пульт управления.

Разработки лазерного оружия ведутся и в России, но большая часть информации об этих работах засекречена. В прошлом году заместитель министра обороны РФ Бирюков заявил о принятии на вооружение лазерных комплексов. По его словам, они могут быть установлены на наземные машины, боевые самолеты и корабли. Однако какое именно оружие имел в виду генерал, не совсем понятно. Известно, что в настоящее время продолжаются испытания лазерного комплекса воздушного базирования, который будет устанавливаться на транспортный самолет Ил-76. Подобными разработками занимались еще в СССР, такая лазерная система может быть использована для выведения из строя электронной «начинки» спутников и самолетов.

Лазер - это оптический квантовый генератор, аббревиатура от Light Amplification by Stimulated Emission Radiation («усиление света в результате вынужденного излучения»). Инженерно-военная мысль еще со времен, когда А.Толстым был написан фантастический роман «Гиперболоид инженера Гарина», активно ищет возможные пути реализации идеи создания лазерного , которым можно было бы резать бронетехнику, самолеты, боевые ракеты и т. д.


В процессе исследований лазерное оружие разделилось на «прожигающее», «ослепляющее», «электро-магнитно-импульсное», «перегревающее» и «проекционное» » (на облака проектируют картины, которые способны деморализовать неподготовленного или суеверного противника).

В свое время США планировало разместить на околоземной орбите спутники-перехватчики, способные уничтожать на начальной траектории полета советские баллистические межконтинентальные ракеты. Эта программа носила название «Стратегическая оборонная инициатива» (СОИ). Именно СОИ дала толчок к активной разработке лазерного оружия в СССР.

В Советском Союзе для уничтожения американских спутников-перехватчиков были разработаны и построены несколько экспериментальных образцов лазерных космических пушек. На тот момент времени они могли работать только при наличии мощных наземных источников питания, об их установке на военном спутнике или космической платформе не могло быть и речи.

Но несмотря на это, эксперименты и испытания продолжались. Первую отработку лазерной пушки было решено провести в морских условиях. Пушку установили на танкер вспомогательного флота «Диксон». Для того чтобы получить требуемую энергию (не менее 50 мегаватт) дизели танкера были усилены тремя реактивными двигателями от Ту-154. По некоторым данным, было проведено несколько успешных испытаний по поражению целей на берегу. Затем случилась перестройка и развал СССР, все работы прекратились из-за отсутствия финансирования. А «лазерный корабль» «Диксон» при разделе флота достался Украине. Дальнейшая его судьба неизвестна.

Одновременно велись работы по созданию космического аппарата «Скиф», который мог бы нести на себе лазерную пушку и обеспечивать ее энергией. В 1987 году даже должен был состояться запуск этого аппарата, который носил название «Скиф-Д». Его создавали в рекордные сроки в НПО «Салют». Прототип космического истребителя с лазерной пушкой был построен и готов к запуску, на старте стояла ракета «Энергия» с пристыкованным сбоку 80-тонным аппаратом «Скиф-Д». Но случилось так, что именно в это время на Байконур приехал известный радетель интересов США Горбачев. Собрав за три дня до старта «Скифа» советскую космическую элиту в конференц-зале Байконура, он заявил: «Мы категорически против переноса гонки вооружений в космос и покажем в этом пример». Благодаря этой речи «Скиф-Д» был выведен на орбиту лишь для того, чтобы тут же быть брошенным на сожжение в плотные слои атмосферы.

А ведь по сути успешный запуск «Скифа» означал бы полную победу СССР в борьбе за ближний космос. Например, каждый истребитель типа «Полет» мог уничтожать всего один аппарат противника, при этом он погибал сам. «Скиф» же мог летать на орбите довольно долго, поражая при этом своей пушкой аппараты противника. Еще одним неоспоримым достоинством «Скифа» было то, что его пушке не требовалась особая дальнобойность, для уничтожения предполагаемых целей легкоуязвимых орбитальных спутников хватило бы и 20-30 км действия. А вот американцам пришлось бы ломать голову над космическими станциями, бьющими на тысячи километров по маленьким бронированным боеголовкам, несущимся на бешенной скорости. «Скифы» же сбивали спутники на догоне, когда скорость преследуемой цели по отношению к охотнику можно сказать просто улиточная.


Маневрирующий спутник "Полет-1"

Получается, что флот «Скифов» разносил бы в щепки американскую низкоорбитальную группировку военных спутников с стопроцентной гарантией. Но все это не состоялось, хотя оставшаяся научно-техническая база является отличной основой для современных разработчиков.

Следующей разработкой КБ «Салют» должен был стать аппарат «Скиф-Стилет». Приставка «Стилет» появилась в названии потому, что на нем собирались установить разработанный в НПО «Астрофизика» бортовой специальный комплекс (БСК) 1К11 «Стилет». Он представлял собой модификацию «десятиствольной» наземной установки инфракрасных лазеров с одноименным названием, работающих на длине волны 1.06 нм. Наземный «Стилет» предназначался для вывода из строя прицелов и датчиков оптических устройств. В условиях космического вакуума радиус действия лучей можно было значительно увеличить. «Космический стилет» в принципе успешно можно было применять как противоспутниковое средство. Как известно, вывод из строя оптических датчиков космического аппарата равносилен его гибели. Что стало с этим проектом - неизвестно.

Не так давно в беседе с журналистами начальник Генштаба Вооруженных сил РФ Николай Макаров заявил о том, что в России, «как и во всем мире, ведутся работы по боевому лазеру». Добавив при этом: «Говорить о его характеристиках пока преждевременно». Может быть он говорил о развитии именно этого проекта.

По данным «Википедии», судьба наземного «Стилета» также очень печальна. По некоторым данным, ни один из двух принятых на вооружение экземпляров в настоящий момент не действует, хотя формально «Стилет» до сих пор состоит на вооружении Российской армии.


Лазерный комплекс «Стилет» на государственных испытаниях







Фотографии одного из комплексов «Стилет», 2010 год, Харьковский танковый ремонтный завод №171

Некоторые эксперты считают, что во время парада 9 мая 2005 года Россия продемонстрировала лазерные пушки, причем не «прототипы», а серийные машины. Шесть боевых машин со снятыми «боевыми блоками» и «оконечными устройства» стояли по обе стороны Красной площади. По мнению экспертов, это и были те самые «лазерные пушки», тут же окрещенные остряками «гиперболоидом Путина».

Кроме этой амбициозной демонстрации и публикаций о «Стилете», каких-либо более подробных данных о российском лазерном оружии в открытой печати нет.

Электронный справочник министерства обороны РФ «Оружие России» сообщает: «Перспективы создания боевого лазерного оружия в России эксперты в этой области, несмотря на противоречивые и недоказанные данные в связи с закрытостью этой темы, оценивают, как реалистичные. Это обусловлено, в первую очередь, бурным развитием современных технологий, расширением области использования лазерных средств для других целей, стремлением создать такое оружие и теми преимуществами, которыми оно обладает в сравнении с традиционными средствами поражения. По некоторым оценкам реальное появление боевого лазерного оружия возможно в период 2015-2020 годы».

Возникает резонный вопрос: как же обстоят дела по этому вопросу у нашего потенциального заокеанского противника США?
Например, генерал-полковник Леонид Ивашов, президент Академии геополитических проблем, дает на этот вопрос такой ответ:

Для нас опасность представляют мощные химические лазеры, размещаемые на самолетах «Боинг-747» и космических платформах. Кстати, это лазеры советских разработок, переданные в начале 90-х годов по распоряжению Б. Ельцина американцам!

И действительно, не так давно в американской прессе появилось официальное заявление Пентагона о том, что испытания боевой лазерной установки для борьбы с баллистическими ракетами, предназначенной для размещения на авиационных носителях, прошли успешно. Также стало известно, что Агентство по противоракетной обороне США получило у конгресса финансирование программы испытаний на 2011 год в размере одного миллиарда долларов.

По замыслам американских военных, самолеты, оснащенные лазерными комплексами, будут действовать в основном против ракет средней дальности, хотя более вероятно, что лишь против оперативно-тактических. Поражающее действие данного лазера даже при идеальных условиях ограничено 320-350 км. Получается, чтобы сбить баллистическую ракету на стадии разгона, самолет с лазером должен находиться в радиусе 100-200 км. от расположения ракетных установок. Но позиционные районы межконтинентальных баллистических ракет расположены, как правило, в глубине территории страны, и, если самолет ненароком там окажется, то не возникает никаких сомнений, что он будет уничтожен. Поэтому принятие США на вооружение лазера воздушного базирования позволит им лишь воспрепятствовать угрозам от стран, освоивших ракетные технологии, но не имеющих полноценной противовоздушной обороны.

Конечно, со временем Пентагон может вывести лазеры и в космос. И Россия должна быть готова к ответным мерам.

Журналистам на брифинге в министерстве обороны США, военные готовы провести испытания установленного на БПЛА лазера для уничтожения вражеских ракет на большой высоте. Но только когда удастся повысить мощность установки. Какое лазерное оружие стоит на вооружении США, каковы его технические характеристики, к чему стремятся американские и российские ВПК в этом сегменте - в материале ТАСС.

"Когда нам удастся повысить мощность нашего лазера, мы можем рассмотреть применение платформы на большой высоте для проведения испытаний", - заявил директор по операциям Агентства по противоракетной обороне Гэри Пеннетт. В прошлом году Пентагон выделил Lockheed Martin и General Atomics $18,3 млн на разработку демонстрационного аппарата, оснащенного лазером низкой мощности, способного сбивать вражеские баллистические ракеты.

XN-1 LaWS

В июле 2017 года телекомпания CNN опубликовала видеоматериал, запечатлевший уничтожение лазерной пушкой ВМС США небольшой мишени на борту движущегося судна и беспилотного летательного аппарата (БПЛА) в небе над Персидским заливом. Сейчас эта пушка установлена лишь на одном американском десантном корабле, но планы в отношении лазерных вооружений у Пентагона весьма амбициозные.

Лазерная пушка под названием XN-1 LaWS (Laser Weapon System - "система лазерного оружия") была разработана компанией Kratos Defense & Security Solutions еще в 2014 году. Ее почти сразу же установили на борт десантного корабля ВМС США USS Ponce. Сам корабль должны были списать в 2012 году, но решили использовать для испытания лазерного оружия.

Как утверждает капитан ВМС США Кристофер Уэлл, XN-1 LaWS поражает цели со скоростью света и значительно превосходит по точности огнестрельное оружие. К числу ее очевидных преимуществ также можно отнести бесшумность и невидимость выстрела. Пушке не нужны боеприпасы, а в состоянии боеготовности ее поддерживает электрогенератор. В ВМС США при этом не пояснили, сколько выстрелов сможет произвести пушка "на одном заряде".

Как сообщили CNN американские военнослужащие на борту USS Ponce, им больше не нужно думать "о сопутствующем уроне", так как лазерное оружие бьет точно по цели и не поражает окружающие объекты.

Помимо пушки

Лазерное оружие активно разрабатывалось еще во время холодной войны как в США, так и в СССР. За это время в США накопилось внушительное количество как разработок, так и действующих образцов лазерного оружия.

Самым известным из них до недавнего времени был самолет Boeing YAL-1, оснащенный бортовым лазером. Он успешно сбивал ракеты-мишени в ходе испытаний, но был разобран на части и утилизирован в 2014 году после того, как Пентагон закрыл финансирование проекта.

Еще один американский проект - ZEUS - был использован ВС США в Афганистане в 2004 году. ZEUS представляет собой лазерную установку "на борту" военного внедорожника HMMWV. Установка мощностью 10 кВт уничтожала с небольшого расстояния неразорвавшиеся снаряды.

Испытания различных по мощности и боевому назначению лазерных установок проводят такие корпорации-"гиганты", как Lockheed Martin, Raytheon, Northrop Grumman и General Atomics. После успешных испытаний XN-1 LaWS ВМС США заинтересованы в лазерном оружии, предназначенном для уничтожения ракет в воздухе. Такие цели поразить гораздо сложнее, чем БПЛА или небольшие суда.

Northrop Grumman работает над созданием лазера в пять раз мощнее XN-1 LaWS. Ожидается, что такой лазер сможет уничтожать почти любые воздушные и надводные цели.

Армия США и Raytheon недавно провели испытания лазера на борту ударного вертолета AH-64 Apache. А ВВС США к 2021 году хотят приступить к испытаниям системы SHIELD, подразумевающей установку компактных средств лазерной самозащиты на американские транспортные самолеты, бомбардировщики и в дальнейшей перспективе истребители.

В декабре 2017-го Пентагон предоставил Lockheed Martin контракт на установку лазерного оружия на истребители F-15. А в январе 2018 года стало известно, что Lockheed Martin разработает высокоэнергетическое лазерное оружие HELIOS (High Energy Laser and Integrated Optical-dazzler with Surveillance) для эсминцев с управляемым ракетным оружием типа Arleigh Burke.

Недостатки

Несмотря на активные разработки и очевидные преимущества лазерного оружия, у него есть существенные недостатки.

Во-первых, такое оружие потребляет очень много электроэнергии. Это означает, что мощные установки будут нуждаться в громоздких генераторах, значительно снижающих маневренность систем, на которые это оружие будет устанавливаться.

Во-вторых, при использовании лазерного оружия возможно поражение цели исключительно прямой наводкой, что сильно ограничивает возможности применения на суше.

Наконец, в-третьих, лазерный луч возможно отразить, используя относительно недорогие материалы. Представитель Народно-освободительной армии Китая еще в 2014 году заявлял, что американские лазеры не представляют особой опасности для китайской военной техники, обшитой специальным защитным слоем.

Российские аналоги

Попытки создать летающий лазер предпринимались еще в советское время. В 1981 году в воздух поднялся советский самолет А-60, созданный на базе Ил-76МД.

После распада СССР о судьбе проекта почти ничего не было известно, но в октябре 2016 года заместитель министра обороны России Юрий Борисов заявил о завершении наземной отработки оборудования А-60.

"Здесь говорить пока многое нельзя. Но могу сказать, что развитие комплекса А-60 продвигается", - сказал Борисов.

По словам советника первого заместителя генерального директора концерна "Радиоэлектронные технологии" (КРЭТ) Владимира Михеева, А-60 сможет с помощью лазеров уничтожать объекты противника. Самолет получит мощную систему электропитания и защиты от радиоэлектронного воздействия противника, а также сверхточную навигацию для облегчения работы экипажа.

Более того, как заявил в марте генеральный директор Российской самолетостроительной корпорации "МиГ" Илья Тарасенко, российский истребитель МиГ-35 способен применять все виды авиационных боеприпасов, в том числе и лазерное оружие.

Александр Мосесов



Последние материалы раздела:

Чем атом отличается от молекулы Сравнение атома и молекулы
Чем атом отличается от молекулы Сравнение атома и молекулы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Что такое молекула и чем она отличается от атома Что такое изотопы
Что такое молекула и чем она отличается от атома Что такое изотопы

Еще много веков назад люди догадывались, что любое вещество на земле состоит из микроскопических частиц. Прошло какое-то время, и ученые доказали,...

Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы
Чем отличаются изотопы одного элемента друг от друга Чем атом отличается от молекулы

Вся материя вокруг нас, которую мы видим, состоит из различных атомов. Атомы отличаются друг от друга строением, размером и массой. Существует...